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EXECUTIVE SUMMARY

Many system concepts being considered for the Strategic Defense Initiative (SDI)
involve the use of pulsed power and high voltages. A significant problem which
needs to be solved in developing operational spacecraft power systems is the
management of electric fields within the spacecraft, the primary power supply and
conditioning equipment, and the pulsed power system. The space plasma
environment is hostile to high voltages because charged particles accelerated by the
fields unimpeded by collisions will impinge on solid body surfaces, emitting other
charged particles which are subsequently accelerated, leading to breakdown. The
Electric Field Analysis Phase II (ELF2) program, described in this report extends
the ELF I codes developed in Phase I to handle geometries encountered in space
pulsed power systems, and applies the resulting next-generation ELF2 codes to
numerically analyze electrical stresses which could initiate potential breakdown
mechanisms in critical subsystems, in a specific application of interest to SDI.
The application selected to demonstrate the capabilities of ELF2 is the Space
Power Experiments Aboard Rockets (SPEAR). These experiments are designed to
gather critical data on the operation of pulsed power systems in the near-earth
space environment.

Traditionally, simple computer models have been used to analyze electric fields and
to develop grading structures in order to prevent flashover during operation of the
pulsed power system. These conventional computer analysis techniques have been
adequate because of the ease of making modifications to an experiment when
flashover does occur and the non--catastrophic nature of a flashover. However, for
SDI, the development of pulsed power systems of unprecedented degree of
reliability is a matter of great importance to the success of the program. The
ability to analyze electric fields produced by arbitrarily shaped conductors in the
presence of nonuniform time-varying plasmas will be an important part of pulsed
power production and conditioning systems. In this report we extend the
development of Tetra's ELF computer codes to include configurations necessary for
the solution of problems encountered in space pulsed power systems analysis.

The ELF Phase II project consisted of four tasks. These were: (1) defining the
physics, identifying geometries and selecting test cases; (2) developing the grid
generators for 3D dielectric geometries and other topologies; (3) testing and code
verification using the ANALYZ code; and (4) conducting demonstration field
analyses for the SPEAR III launch payload.

The selection of the SPEAR III launch payload as the paradigm for developing
ELF2 led to two challenges: the plasma sheath physics for a large Langmuir
probe in space and the geometry of the SPEAR payload. The geometry presented
over an order of magnitude variation in scale size and the boom bushing of the
payload had a highly re-entrant configuration. This in turn posed two
requirements for grid generation: (1) grid stretching, and (2) topological
flexibility.

In order to generate the required flexible topology, we developed a user-modifiable
grid topology for ELF2. When mapping the physical space onto a logical
cartesian space, the user is now able to alter the logical connectivity of a regular
grid by creating selected cut--outs in logical space. An instructions-driven input
technique was implemented to enable the non-expert user to build most geometries
of interest by piecing together elementary geometrical shapes, in any given
combination.
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The internal consistency of the ELF codes was checked with the Computer
Sciences Corporation ANALYZ program. The latter is a source-code static
analyzer which identifies many classes of logical, semantical, syntactical and linkage
errors, thus significantly reducing debugging times. The new ELF2 codes were run
through ANALYZ with excellent results.

Two problems were selected to demonstrate the capabilities of the new ELF2 code.
The first was a field analysis of the SPEAR III launch payload. The second
problem dealt with a 2D and a 3D floating body test case.

There were insufficient funds to write a fully integrated Users Manual. However,
all new coding is fully documented internally. Specifically, the new user interface
modules are documented internally to the level of a user's manual. Also, running
the interactive mode of the new input technique serves as a training session. The
new input techniques are sufficiently intuitive that a typical user may successfully
use them merely by modifying an example instructions file.
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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

To Convert Pram To Multiply

angsao meters Wm 1.000 000 X E-10

atmosphere (normal) kilo pascal (kPa) 1.0 13 25 X E.2

bar kilo pascal (kPa) 1.000 000 X E.2

barn meter2 (in2) 1.000 000 X E-28

British Thermal unit (rmocemical) joule (J) 1.054 350 X E+3

calorie (tbcrinocendcsl) joule (JI 4.184 000

Cal P h -nchieafl/eM2  Mega jouje/m'M2 /m2) 4.184 000 X 3-2

curie g"g becquerel (GBqr 3.700 000 X 3+.1

degree (angle) radian (Tad) 1.745 329 X E-2

degree Fahrenheit degree kelvin (K) tx-(tf + 459.67)/ 1.8

electron volt joule (J) 1.602 19X E-19

erg joule (J) 1.000 000 X E-7

erg/second watt (WI 1.000 000 X E-7

foot meter (m) 3.048 000 XE- I

foot-pound-force joule (J) 1.355 818

gallon (U.S. liquid) meter' (Mn3 ) 3.785 412 X E-3

inch meter (m) 2.540 000 X E-2

jerk joule (J) 1.000 000 X E+9

joule/kilogram (J/Kg) (radiation dose
absorbed) Gray (Gy) 1.000000
kilotons terajoules 4.183

kip (1000 lbf) newton MN 4.448 222 X E+3

kip/inch2 (kit) kilo pascal (kPa) 6.894 757 X E33

ktap newton-second/rn' (N-elM2) 1.000 000 X E.2

micron meter (m) 1.000 000OX E-6

mil meter Wm 2.540 000 X E-5

mile (international) meter (m) 1.609 344 X E+3

ounce kilogram (kg) 2.834 952 X 3-2

pound-force OIf avoirdupois) newton MN 4.448 222

pound-force inch newton-meter (N-m) 1. 129 848 X E-1

pound-force/inch newton/meter (N/rn) 1.751 268 X 3.2

pound-force/foot? kilo pascal (kPa) 4.788 026 X 3-2

pound-force/inch' (pal) kilo pascal (kPa) 6.894 757

pound-mass (Ibm avoirdupois) kilogram (kg) 4.535 924 X E-1

pound-mass-foot' (moment of inerta) kilogram-meter' (kg.M2) 4.214 011 X 3-2

pound-mass/foot' kilogram/meter' (kg/mi) 1.60 1 846 X 3.1I

rad (radiation dome absorbed) Gray (Gyro 1 .000 000 X E-2

roentgen coulomb /kilogram (C/kg) 2.579 760 X E-4

shake second (s) 1.000 000 X E-8

slug kilogram (kg) 1.459 390 X E+

torr (mm Hg. 0OC) kilo pascal (kPa) 1.333 22 X E-1

OThe becquerel (Bq) is the ST unit of radioactivty; Sp z 1 event/s.
"The Gray (Gy) is the ST unit of absorbed radiation.
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SECTION 1
EARLY DEVELOPMENT OF THE ELF CODES

The Electric Field (ELF) analysis codes were initially developed as a tool for the
design of electrodes for gas discharges, such as those in electric lasers and pulsed
power switches (Ref. 1). The design of electrodes is well defined only for
unrealistically idealized conditions. The frequently used Rogowski electrode shapes
are "optimal" only in the sense of producing an enhancement factor of unity, i.e.,
the electric field strength is nowhere greater than the nominal value. More
importantly, the solution is based on vacuum conditions and is not a complete
specification, i.e., the Rogowski shape is not closed, and must be completed by
some (usually arbitrary) closure, such as blending with a radius. The same is
true of the Chang electrodes. In addition, vacuum calculations do not properly
include the field distortion effects of plasmas or arcs. Finally, conventional E-field
codes do not calculate the electric fields on conductive surfaces accurately, with
errors typically from 10 to 30 percent at the surface (Ref. 2). The boundary-
fitted coordinate system used in ELF makes possible very accurate analysis of
electric fields on conductor surfaces. Comparisons with analytic solutions have
yielded accuracy of better than 0.1 percent using only modest grid resolution.

The ELF computer codes address the realistic electrode design problem, including
nonuniform plasmas and complete electrode specification including "packaging
constraints of overall size. Using efficient finite difference methods in boundary-
fitted coordinates, the ELF codes make it practical to design the electrode
geometry and operating parameters during interactive sessions on a VAX computer.

For example, the electrodes for the Radial CO 2 Laser (RCL) were designed by
Tetra using the ELF codes as follows. The electrodes are essentially concentric
cylinders between which current flows radially. However, the ends needed to be
fluted in such a way that field distortions (especially enhancements) are kept
under control. Numerical machining considerations indicated elliptical cross section
curves would be cost effective. A series of 2D ELF calculations assuming constant
conductivity quickly lead to the near optimal design illustrated in Figure 1, below.
The plot labeled "RCL 1.5 x 2.5 Shaper" shows the E-magnitude contours for the
final design. There is a maximum field at the inner electrode, but it is less
severe than for ellipses with slightly higher or lower eccentricity. The
accompanying engineering drawing in Figure 1 is a detail of the final blueprints
for the RCL machine, which has been operational at Tetra's laboratory since
January, 1987.

The code applications go beyond the electrode design problem, and have included
analyses of pulsed electric CO 2 lasers, xenon flashlamps, glow discharge switches,
and modeling of plasma streamers. For xenon flashlamp calculations and for
streamer calculations, the code was modified to also calculate temperature at each
node point by implicit time integration of an energy equation with nonlinear
coupling to the E-field. These calculations have given insight into streamer
formation and propagation in plasma discharges, electrode effects in self-sustained
glow discharges, and lensing effects in glow discharges due to nonuniformities from
external ionization sources. Also, the effect on conductivity of an externally
applied magnetic field is included as a first order perturbation calculation.

For many cases studied, the electric field solutions differ significantly from vacuum
calculations, indicating that the commonly used Rogowski solutions and Chang
solutions for the electrode shapes are far from optimal for important classes of
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problems. The true optimal geometry is, in fact, strongly dependent on the
discharge kinetics and the operating conditions whenever significant physics are
involved in the conductivity. Also, different devices may have different optimality
criteria; e.g., an electron beam laser may be designed to give nearly uniform
energy deposition in the cavity, whereas a self-sustained discharge may be designed
to minimize the local extrema of the electric field strength, subject to external
packaging geometry constraints, in order to minimize arcing and maximize the
discharge stability.

A single code is used for all 2D calculations, both steady-state and time-
dependent. Three-dimensional steady-state and time-dependent calculations are
done in a separate code and are used to design the roll-off of the electrodes in
the third dimension in order to minimize locally high electric fields due to edge
effects.

In the 2D code, options are available for planar, axisymmetric, or radial electrode
geometries. Boundary conditions and boundary shapes may be time dependent; in
particular, an external circuit module is provided so that electrode potential may
be calculated as part of the solution, dependent on the integrated current through
the cavity, rather than being specified a priori. The geometry and conductivity
calculations are modularized so that they may be readily modified by the user.

Automatic grid generation is performed interactively using elliptic generating
equation techniques. As an option in the 2D code only, a solution adaptive grid
generation technique is used to adapt the grid to the solution (either in the
steady-state solution, or within an intra-time-step interation for a time-dependent
problem) in order to increase the resolution of the maximum electric field strength
always an important design parameter) and enhance the accuracy.

The code accounts for externally controlled or self-sustained glow discharges or
other plasmas, such as arcs, by modifying the nonlinear conductivity. The
conductivity is obtained by time integration of the ordinary differential equations
for electron number density at each mesh point in the 2D or 3D grid, coupled
nonlinearly to the local E-field. The electron drift velocities and discharge
kinetics coefficients are obtained by interpolation of tabular data obtained either
empirically or from Boltzmann code solutions performed beforehand (i.e.
noninteractively) for the particular gas mixture used.

The development of the codes has involved an interdisciplinary approach including
gaseous electronics, laser physics, numerical mathematics, and software engineering.
The computational techniques developed and embodied in the codes include the
following areas: semidirect/marching methods for nonlinear elliptic equations, fully
implicit methods for strongly coupled nonlinear time evolution equations, solution-
adaptive boundary-fitted grid generation, computational farfield boundary conditions,
gas conductivity modeling, parametric surface representations, super microcomputer
operations, artifical intelligence (computer symbolic manipulation), code validation
procedures, software engineering for interactive codes, and numerical machining
considerations.

As described above, the ELF codes are potentially capable of handling the
geometries that may be encountered in spacecraft pulsed power or power
conditioning systems. However, the ELF codes did not include dielectrics. The
physical description also needed to be modified to include time dependent space
charge development.
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In Phase I, the ELF codes were modified to include dielectrics, and the
formulation to handle time-dependent space-charge effects was developed. In
Phase I the 2D code was enhanced to include a dielectric body only for a simple
familiy of geometries, and analyses were conducted to determine the feasibility of
implementing dielectrics in extended geometries, including three dimensions.

For Phase II, Tetra proposed to develop the next generation ELF2 code. This
new generation would expand the geometrical capabilities of the Phase I code,
especially in 3D, including dielectrics. In the process, the code performance is
improved, especially in the grid generation, and in the user interfaces to the code.
At the completion of the Phase II program the ELF code will allow realistic
modeling of particluar SDI-related problems, including analyses of the E-field
environment for unusual geometries and of dielectric insulation in specific conductor
geometries.

3
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SECTION 2

PHASE II PROGRAM PLAN

2.1 OBJECTIVES.

The Phase I ELF code demonstrated the feasibility of powerful additional
capabilities needed in the analysis and design of space pulsed power sytems. The
Phase II program was proposed to significantly expand the ELF code capabilities,
apply the resulting ELF2 codes to analyses of selected design details in a real
space pulsed power payload of interest to SDI, and deliver a set of
next-generation ELF2 codes useful for many applications in pulsed power sytem
analysis and design, especially in space plasma environments.

The proposed extensions of the ELF I Code capabilities were focused on expanding
the code geometrical capabilities. The Phase I effort demonstrated the feasibility
of including dielectrics by implementing one specific topology in 2D, and was
therefore limited to one class of topologically equivalent geometries. In Phase II,
topologies were addressed to handle other geometries encountered in real device
system and subsystem designs. Algorithms initially coded in 2D were generalized
and implemented in 3D to model edge effects and to handle the complex
geometries of real-life engineering design analyses required when SDI concepts are
implemented in concrete prototype systems. In the process, the ability by third
parties to use ELF codes is significantly increased by improvements in internal
documentation and structure of user-modifiable modules, and facilitation of user
input and output.

2.2 RATIONALE AND APPROACH.

Concepts being investigated under the Strategic Defense Initiative are stretching the
state-of-the-art in many technologies. Most of them have ambitious pulsed power
requirements which will necessitate significant advances in analysis and design tools,
including electric field mapping. SDI battle station requirements for both
continuous and burst power are significantly beyond our present engineering
experience in space (Ref. 3). High voltage insulators in space are often limited by
damaging surface flashover or sudden discharges after accumulations of injected
charges.

The SPEAR program is a set of space plasma physics experiments designed to
collect basic data on which to base high-voltage pulsed power engineering criteria
for SDI space-borne systems. Tetra was invited to the SPEAR I Preliminary
Design Review in Seattle, WA in mid-June, 1987, to see what contributions the
ELF code could make to the program. The ELF2 codes would have ideally
served the objective of risk management in the unknown space environment. The
problems involve sophisticated plasma physics phenomena and complex geometries.
The physics include a plasma sheath of thickness comparable to experiment sizes,
non-local field dependent currents (due to long mean-free-paths), and possibly
geomagnetic field effects. Geometrical complexities include many conductor rings in
the plasma shield bushings, and asymmetries which make several problems strongly
three-dimensional.

Unfortunately, the ELF2 code was not available to influence the SPEAR I design.
The Phase I code's usefulness was limited to critical design details, such as the
field distributions between the first (grounded) and second bushing rings and the
HV cable for either "vacuum" conditions or a simplified plasma conductivity
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model. The significant new capability for electric field numerical simulation,
design and analysis resulting from the Phase II next-generation ELF program will
provide valuable assistance in analyzing the design and results of the SPEAR
experiments and many other pulsed power systems in the future.

The ELF codes are uniquely suited to electric field analysis in the presence of
arbitrarily-shaped conductors and nonhomogeneous, nonlinear and time-dependent
plasmas because of their unique boundary-fitted grid generation approach and their
efficient finite difference methods. The approach used in Phase II has made
maximum use of the numerical methodologies already in place in the existing ELF
2D and 3D codes. However, for realistic analyses of pulsed power sytem design
details, it will be necessary to use special grid generation techniques for nontrivial
3D geometries, including dielectrics in 3D.

Except for truly difficult 3D geometries (e.g. linked toroids), extension of 2D
algorithms to 3D is relatively straightforward, but very tedious. Before developing
the non-dielectric (pre-Phase I) 3D ELF code, we estimated the algebraic
manipulations would require over two man-years. That was considered infeasible
not only economically, but also because of the great difficulty of assuring
error-free performance by the programmer. The solution was found in use of the

artificial intelligence based symbolic manipulation program MACSYMATM (Ref. 4).

In order to keep costs within the proposed level of effort, a few simplifications
were necessary. The first simplification is to assume perfect vacuum conditions in
space. This is an acceptable approximation for modeling the field distributions
prior to the inception of insulator breakdown. This will provide useful insight
into possible weaknesses (field stress points) which may lead to insulator
breakdown. It also provides initial conditions for models of hypothesized
breakdown mechanisms in space plasma environments. The significant physics
limitations of this simplification is descirbed in this report along with possible
optional extensions to remove some of these limitations.

The second class of simplifications involves geometries. The Phase I code was
limited to one 2D topology: the dielectric body must cover one of the four
boundaries and part of the two adjacent ones. While this served the Phase I
purpose of demonstrating the feasibility of a dielectric ELF code, many practical
applications require different topologies. Electron and ion sources usually have a
third "focusing" electrode, which topologically comprises a "floating" body. Corona
rings require a large number of floating conductors to be modeled, as do
transformer windings, to design appropriate field shaping shields. Realistic
modeling of spacecraft charging requires many conductor and dielectric bodies.
Common difficulties in analyzing high voltage insulation materials are triple-point
junctions, use of several insulation materials in layers, and unintentional voids in
the insulation. All these applications require modeling topologies other than the
one chosen for proof-of-principle in Phase I.

In order to perform complete analyses of such complex geometries, we proposed to
extend the geometrical capabilities of the ELF codes. Specifically, we have
extended the 3D geometries to handle complex structures commonly expected to
affect field distributions near stress areas, including dielectrics in 3D. In Phase I,
only one 2D topology was implemented, but many goemetries can be handled
within that topological family. In Phase II, a significant level of topological
flexibility was implemented in 2D and 3D, so the next-generation ELF2 codes will
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be able to handle many more applications with more complex geometries, and the
grid generation techniques implemented will be extendable to yet other geometries
with limited additional effort.

2.3 TASK BREAKDOWN.

The Phase II program was divided into five tasks, and a number of sub-tasks.

2.3.1. Problem Definition.

a. Define physics limitations. The plasma physics conditions under
which the ELF codes apply were carefully defined. Possible further
extensions which could remove or ameliorate significant limitations at
varying levels of effort were identified.

b. Define aeometries. Tetra defined the classes of geometries to be
addressed in consultation with both the Contract Technical Monitor to
insure responsiveness to mission requirements, and with Ecodynamics
to insure feasibility of the modeling.

c. Identify test cases. Test cases for final verification were defined
jointly by Tetra and Ecodynamics.

2.3.2. Grid Generators.

Ecodynamics was responsible for algorithm development and coding required for
modifications and extensions to the present ELF codes required to handle the
specified classes of geometries. These extensions included the following:

a. Implement dielectrics in 3D. This implemented a 3D version of the
Phase I dielectrics in 2D.

b. Implement 3D families. This extended the 3D codes to those families
of geometries identified in Task l.a.

c. Extend tovologies. This extended the Phase I 2D topology to meet
the specific requirements defined in Task 1.a.

2.3.3. Test and Verification.

a. ANALYZ. We tested all coding with support from CSC as needed
using their proprietary ANALYZ codes. All detected errors were
corrected.

b. Test Error Convergence. Algorithm correct coding was verified with
systematic error convergence tests.

c. Run Test -Cases. Test cases were run by Ecodynamics, and
refinements made as necessary. Tetra ran some final test cases before
final acceptance of verified code, providing feedback to Ecodynamics
on user friendliness of input/output.

2.3.4. Demonstration Field Stress Analyses.

To demonstrate the power of the next-generation ELF2 codes, we chose to analyze
critical subsystems in the SPEAR III payload. Specifically we analyzed the first
two rings of the voltage-grading bushing, and the field enhancements they
produced.

7



2.3.5. Program Management.

a. General Management and Reporting. Tetra was responsible for general
management and integration, including periodic progress reports, program
management, insuring responsiveness to user needs as expressed in guidance
from the Contract Technical Monitor, fiscal management and reporting, and
technical integration of the effort. Two formal Program Reviews were
conducted for the Contract Technical Monitor and his designated
representatives, consultants and advisors. Written quarterly progress reports
were submitted to report significant technical achievements and/or problems.

b. Final Code Documentation and Delivery. Internal documentation was
concurrent with coding, and testing followed every major modification.
Documentation of every option and conglomerate input/output specifications
and running instructions will facilitate subsequent use of the deliverable
ELF2 codes by scientists and engineers in government and industry. A
copy of the final code will be made available to any member of the SDI
Space Power Consortium on request.

c. Final Report Preparation. This final technical report documents the Phase
II ELF code extensions, including rationale, caveats and limitations, and the
demonstration SPEAR II analyses, including ELF computation results and
interpretation.
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SECTION 3

PROBLEM DEFINITION

3.1 SPEAR PARADIGM.

The development of any large computer code like ELF is guided in practice by
the needs or requirements of specific problems. In order to insure that the next
generation ELF2 development would be responsive to real needs of the pulsed
power community working on SDI research, we sought a model problem, or
paradigm.

We chose the payload of the SPEAR third launch to provide that paradigm. The
SPEAR program seeks to gather basic data on the low earth orbit plasma
environment as it affects and limits pulsed power systems in space. This choice
was driven by both the relevance of the mission, and the challenge to E-field
computations. The mission is highly relevant, because most space-based SDI
concepts require pulse power levels unprecedented in space, and careful field
management may be critical to the success of many subsystems. E-field analysis
of the SPEAR III payload is challenging in both the plasma physics and the
geometries that must be modeled.

3.2 PLASMA SHEATH PHYSICS: THE FIRST CHALLENGE.

The main SPEAR experiment is essentially a large Langmuir plasma probe. A
20 cm conducting sphere is pulse-charged to a high voltage with respect to
plasma ground, and the current drawn from the space plasma is measured at
different voltages (up to 45 kV).

The dominant phenomenology involves the formation of a plasma sheath around
the probe, which shields the bulk of the plasma from electric fields. To
understand the phenomenology, consider a positive voltage, which attracts electrons
and repels positive ions. Within an ion transit time, the sheath will have no ions
at all, but the space plasma reservoir will continue feeding electrons into the
potential well trap. The field distribution will be affected by the space-charge of
the electrons. That space-charge density will vary significantly, since each electron
in the collissionless plasma accelerates from the few eV characteristic of the
ambient plasma to the tens of kilovolts applied to the current collector of the
probe. The space-charge will be strongest near the edge of the sheath, where the
electrons are slowest. That space-charge field causes the total E-field to end
rather abruptly at a well-defined sheath edge. A steady-state is quickly
established at the radius where the random thermal current from the ambient
plasma exactly matches the space-charge-limited current from the sheath edge to
the current collector, which remains at the same voltage V as long as the driving
circuit can handle the collected current I. The measured I vs V curves provide
the primary diagnostic, from which plasma parameters such as temperature and
number density can be backed out.

This plasma physics regime presents a challenge for the ELF codes, because the
field solutions are clearly driven by the space-charge distribution. The original
applications of ELF involved collision-dominated plasmas, where the field solution
is driven by the conductivity a via the Laplace equation:

V =ayo = 0 (3.1)
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This new situation is p-driven, via the Poisson equation:

V2 = -p/eo (3.2)

where p is the space-charge density and co is permittivity of free space.
Mathematically, both are elliptical field equations, but the second is
nonhomogeneous because the right hand side is non-zero. They are both
nonlinear, because, in general, both a and p depend on the fields we want to
solve for. However, the nonlinearity can be handled with a computational loop, as
long as the space-charge p can be calculated given an estimated E-field solution
within each loop iteration in such a fashion that the numerical system converges.

If we ignore the unavoidable connection bringing the high voltage to the
current-collecting sphere (and carrying away the collected current), the problem
becomes one dimensional. The symmetry is that of concentric spheres, with the
only independent spatial parameter being radius R. The analytical solution to the
space-charge limited current between two concentric spheres was published by
Langmuir and Blodgett in 1924 (Ref. 5). That analytical solution serves as the
basis for a benchmark to test a 2D rho-driven E-field solver, as described in
detail in Appendix A. However, the Langmuir-Blodgett Theory is just a starting
point.

We eventually built a numerical solution based on the 1D ordinary differential
equation

= -P/o (3.3)

with the solution at any specific radius R serving as initial conditions. We used
the expression for calculating p/eo used in the NASA Charging Analyzer Program
for Low Earth Orbit (NASCAP/LEO) derived by I. Katz, et al (Ref. 6). This
numerical 1D model was used not only to generate benchmark test cases for the
2D p-driven ELF code, but also to test other corrections to the basic
Langmuir-Blodgett model. (See Appendix A for details.)

Implementation of a 2D p-driven ELF code required that the p calculation be a
local calculation. (The alternatives, ray-tracing and particle-pushing, are
computationally expensive.) The key is a local calculation of the current
convergence factor. In ID, that is trivial as long as the sheath radius Rs is
known or can be estimated. The spherical convergence of current lines
concentrates the space charge by a factor (Rs/R) 2, where Rs is the sheath radius.
However, for a general 2D geometry it is not obvious that the convergence factor
can be calculated or estimated from strictly local parameters. That problem was
solved in the NASCAP/LEO model by an empirical fit for the convergence factor
as a function of local fields E,0 derived by M. J. Mandell et al (Ref. 7) That
fit is adequate for the purpose of estimating the total current collected by the
probe. However, we found some inconsistencies when we applied Mandell's fit to
the 1D spherical problem. Eventually, we came up with an alternative procedure
based on our numerical solution to the basic differential equations. That
alternative is fully described in Appendix B.

The complete algorithm was coded in module SPCHRG, which generates a custom
convergence factor fit function during initialization, and subsequently calculates the
space-charge p from the local fields E,O. That module was integrated into a
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special p-driven version of the ELF code. The nonlinearity is handled numerically
by under-relaxation. Tests on a simple model problem indicated that convergence
is readily obtained for the small perturbation effect of the SPEAR III conditions,
as expected. However, the result does not display the correct plasma sheath
behavior at the edge.

The problem is actually a Stefan, or free boundary, type of problem. Two
approaches are possible. In the more accurate approach, the plasma sheath
boundary would be set at the outer boundary of the computational grid, and
solved by iteration. This approach requires a new grid generation at each outer
iteration; besides being expensive, there are ambiguities involving the evaluation of
the E-field such that both potential and the difference expression for E can be
driven to zero at the same location. The other approach involves solution on a
fixed grid, with the potential values between the sheath and the outer boundary
being driven to zero. The difficulty here is in obtaining the correct behavior with
the sheath edge not lying exactly on a node point.

These difficulties lie beyond the ELF2 scope, but could be addressed in follow-on
efforts. Several applications to the SPEAR III mission are described in detail in
Appendix C, with specific plans on how to modify the ELF codes to meet those
needs.

Because these difficulties lie beyond the scope of the ELF2 level of effort, we did
not integrate the p-driven option into the permanent ELF code but left it in a
special-purpose version of the ELF code. Furthermore, the ID calculations make
it clear that the filed solution is not significantly different from the vacuum
solution except near the sheath edge. Therefore, we proceeded with the
geometrical challenges posed by the SPEAR model problem without the
space-charge effects.

3.3 GEOMETRY: THE SECOND CHALLENGE.

There are actually two difficulties with the SPEAR III geometry. The first
difficulty is that the geometrical scale size varies by orders of magnitude. The
second is that the geometrical structure of the boom bushings is highly re-entrant.
We dealt with these two difficulties in different ways.

Figure 2 shows the general layout of the planned SPEAR III payload. The focus
of our interest is the conducting sphere at the end of the boom, at the top of
the figure, and the plasma sheath it will create when a high voltage pulse is
applied. The largest scale-size of the SPEAR III problem is given by the radius
of the sheath. That varies with the applied voltage, but the order of magnitude
is 10 meters. At the other extreme we have the 20 cm current collecting sphere.
That gives a range of two orders of magnitude.

The idealized vacuum 1D spherical problem has a simple analytical solution. The
spherical symmetry requires that ER2 be constant; OR is constant if 0 is
referenced to R = oo. Although the analytical solution is simple, this represents
a relatively severe test for a finite differences code like ELF, since on linear axes
the solution is not at all benign. In fact, it should be obvious upon reflection
that a stretched grid is indispensable. We artificially caused the 2D ELF code to
generate a grid where the constant-R grid-lines were equi-distributed on a log
scale. The resulting grid is shown in Figure 3. Notice the constant aspect ratio
of every grid cell.
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However, even with an ideally stretched grid, we cannot expect ELF to produce
the exactly correct field distribution. That is because the discretized numerical
analogue of the differential equations are only an approximation of the continuous
equations. Discretization errors in each cell will accumulate across the grid, so we
cannot expect to get arbitrarily close to the exact solution merely be reducing the
numerical tolerance. What we can expect is that the discrete solution will
approach the analytical solution as the grid is progressively refined. Therefore, we
first calculated an ELF solution with a sparse grid of only 33 constant-R
grid-lines, and then with a refined grid of twice the resolution (65 lines). As
shown in Figures 4 and 5, the 65 grid solution has about half the error of the
33-grid solution. Thus, ELF successfully passed the grid-convergence test.

Figure 6 shows a close-up of the planned current-collecting sphere and the
voltage-grading bushing surrounding the high-voltage feed at the center of the
supporting boom. The first step toward analyzing the field enhancements near the
first bushing ring was to provide credible far-field boundary conditions. That was
done by solving the field distributions between an idealized sheath edge and an
idealized boom/sphere (Figure 7). That solution was imposed on the outer
boundaries of the "close look" physical space shown in Figure 8. Notice that not
only do we have another serious scale-size range problem, but also a problem with
the highly re-entrant geometry of the busing rings (only two of which are
modeled - the rest are idealized). This required the unusual logical computational
space topology shown, with its cut-outs and extensions. The dashed lines
represent grid control lines, required to insure appropriate stretching of the grid.

In summary, the unusual requirements of the SPEAR paradigm suggest two
requirements for grid generation: 1) grid stretching, and 2) topological flexibility.
In general, the user needs control over both areas. In the following chapter we
shall describe the methods we implemented in the next generation ELF codes to
provide the user with those capabilities.
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Figure 6. Close-look ELF analysis to determine current collected
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Figure 7. Field solution providing far-field boundary conditions
for close look at SPEAR bushing first ring.
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SECTION 4

GRID GENERATOR

4.1 NEW FLEXIBLE TOPOLOGY.

One of the most significant developments of this effort was a technique to handle
many difficult geometries with a user-modifiable grid topology. The basis of the
ELF codes is a mapping of physical space to a logically cartesian space. In two
dimensions, that logical plane is normally rectangular. Discretization of that
rectangular plane results in a grid with the logical connectivity of a regular grid,
as illustrated in Figure 9.

The user is now able to alter that topology by creating selected cut-outs in
logical space. That is accomplished by "blanking out" certain rectangular areas of
the grid, as illustrated in Figure 10.

The status of each node (intersection of two grid lines) is communicated
throughout the code by the value in the corresponding position of an integer array
called IBLANK. A value of 0 flags an inactive node; a value of 1 flags an
interior node. Other values > 1 are reserved for special uses; for example, a
boundary node is flaged by a value > 6. Thus, a print-out of the IBLANK
values arranged the same way the notes are related gives an immediate picture of
the logical topology.

For many geometries, that is not enough, because left alone the grid generator
would not provide adequate resolution of certain high-interest areas. For that
purpose, the user may need to define control lines in addition to the interior
boundaries created by the cut-outs. The actual positions of the nodes on a
control line are subject to being changed by the grid generator, but the original
spacing of the points on a control line will influence the grid generator, "pulling"
grid lines toward regions of higher point density. In general, the stretching along
a control line needs to be an exaggeration of the desired effect, but it must be
smooth.

The spacing of the control line and boundary nodes is used to compute weighting
functions 4,, 19 at each active node by interpolation along grid lines. The
weighting function calculation is performed internally by the code with no user
intervention. However, the user needs to know that the control lines apply only
for the Thomas-Middlecoff option (the default grid generation method), and he
must understand the general effect of control lines explained in the paragraph
above. Control line nodes are identified internally by a value 1<IBLANK<6.

4.2 NEW INPUT TECHNIQUE.

The capability to blank out selected areas of the logical-space grid significantly
exceeds the requirements under Task 2, Grid Generator. However, it also created
an unanticipated challenge to make this powerful new capability accessible to a
non-expert user.

Therefore, we developed a module of coordinated utilities which allow the user to
either interactively or in an instructions file do the following:

1. Define the desired topology by "blanking" and "restoring" rectangular
elements in any combination,
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2. Locate all boundaries and optional interior control lines, by combination of
straight lines, segments of ellipses or superellipses, and distorted quadrants of
superellipses, or specifying node location point-by-point,

3. Set the boundary conditions by a default set (for most nodes), with
exceptions specified node-by-node or by interpolation (by index, physical
arc-length, X-only or Y-only).

This instructions-driven structure allows the user to build most geometries of
interest by piecing together elementary geometrical shapes in any combination. The
four elements on which he can build are described in detail in Appendix D.
Other elements can be added in the future as needs arise with minimal additional
coding.

The interactive mode on input is awkward for all but very simple geometries,
since user errors are virtually unavoidable. Its primary use is for user training.
In fact, a stand-alone program called INTBC was created specifically for user
training.

The original input technique used for specifying boundary conditions required the
user to specify the stencil values for the discretized differential equations. This
requires an unusual degree of sophistication in the user's knowledge of numerical
methods of solving elliptical differential equations. Rather than making the user
set the boundary stencil values directly, it is preferable to let him operate at the
higher level of abstraction of Neuman (specified potential) or Dirichlet (specified
normal gradient) boundary condition types. Specifying potential is easy, as is
specifying zero normal gradient in logical space. What is difficult is specifying a
normal gradient in physical space, because derivation of the discretized normal
gradient operator requires knowledge of the grid metrics. We developed the coding
to automatically set the stencil for the first two cases: that is, the user can
specify a potential distribution or a logical normal gradient. However, the physical
normal gradient option was not implemented for lack of funding. That is left as
an option for future development. Of course, an expert user may always specify
the stencil directly.

Finally, we developed a general-purpose exterior boundary (no blanked areas)
geometry and boundary condition definition module using the above user-friendly
input techniques. That module is contained in the source code file ELECGEN.for.
The ELECGEN module reads instructions to define the geometries of all four outer
boundaries plus optionally a fifth surface for the dielectric body option. It also
sets boundary conditions at the Neuman or Dirichlet level of abstraction, including
the option to specify a physical normal gradient. That option is not operational
only for interior boundaries created by blanked cut-outs.
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Figure 9. Illustration of a full regular grid in logical space.

22



Figure 10. Ilustration of a logical space grid with one
blanked-out area.
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SECTION 5

TEST AND VERIFICATION

5.1 CODE VERIFICATION.

The internal consistency of the ELF codes was checked with the Computer
Sciences Corporation's (CSC) ANALYZ program. ANALYZ is a source-code static
analyzer which identifies many classes of logical, semantical, syntactical and linkage
errors (Ref. 8), and has been shown to significantly reduce debugging time in the
development of codes much larger than the ELF codes (Ref. 9).

At the very beginning of the project, the entire existing baseline ELF source codes
were run through CSC's ANALYZ Code. No serious errors were detected, but
many diagnostic messages were generated. Most of those were only potential code
transportability problems. Those diagnostics were ignored, since ELF2 development
is limited to the VAX/VMS environment. The diagnostics from the ANALYZ
code that may cause potential problems (although none of them serious) were
fixed.

Toward the end of the project, after the main modifications to allow grid
cut-outs, the new coding was run through ANALYZ again. The results were
again excellent, with only warnings about code transportability issues. The
recurring problems are as follows:

A. PRINT statements are used copiously throughout the codes. The problem is
that the effect is environment-dependent. The intended effect is to write a
message to the screen. In batch mode, most systems will divert the message to a
LOG file. No easy fix is available that will work on all systems. A batch
version of ELF in the future will require significant redesign of the input/output
(i/o) and control structure in any event.

B. Mixed mode arithmetic is often used. This is considered undesirable because
the effect is not clear. However, the FORTRAN 77 standard defines what the
effect ought to be, and virtually every compiler on the market complies with the
standard.

C. END DO statements are used in some of the new coding. Although not
part of the F77 standard, this convenient extension is allowed in VMS Fortran
and an increasing number of modern compilers. In other words, it is becoming
standard practice de facto.

D. Tabs are used for aesthetic alignment, even in executable lines. Some
systems treat tabs as single spaces, making some Fortran lines invalid. On other
systems, like the Cray, tabs are unacceptable altogether. Should we need to port
ELF to a Cray in the future, mechanical replacement of tabs is straightforward.

In addition to the two large ANALYZ runs, several small runs were made to test
structural connectivity and internal consistency of modules. This "test by module"
approach was especially useful in developing the INTernal Boundary Conditions
(INTBC) module and the new ELFPLOT code described below.

The new ELFPLOT coding was tested extensively with the ANALYZ static
FORTRAN source-code analyzer. This helped modularize the ELFPLOT code, and
identified not only subtle coding errors but also the use of non-standard coding in
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ELFPLOT. As a result, we are assured that the new ELFPLOT coding is not
only free of language usage errors, but is also highly machine-transportable. We
estimate that porting the new CGS-based ELFPLOT to any environment
supported by CGS, such as Cray mainframes or Sun workstations, will take about
40 man-hours. Additionally, it should be possible to build an ELFPLOT program
based on a totally new plotting primitives package (on a PC, for example)by
replacing only the CGSCALLS module within about 80 man-hours.

5.2 USER-FRIENDLY I/O.

In anticipation of extensive testing of the ELF2 codes, a more user-friendly
input/output technique developed by Tetra was implemented in the 2D ELF main
program and the Tektronix 4010 version of ELFPLOT. Preliminary Beta-test user
feedback was encouraging. The technique prompts the user with current (default)
values for a group of related parameters in one-line tabular form; allowing him to
enter changes only (under current values). The "changes only" technique is more
efficient for both novice and experienced users. Some other modules requiring user
i/o were changed to the same user-friendly format.

In addition, the ELFPLOT program was re-structured internally to group related
plot types (surfaces, grid, functions vs. arc length, function contours). As a
consequence, the new version has significant new capabilities. We now can plot
My function in the output file, i.e. electric potential, power deposition,
conductivity, temperature, or electron density, along M grid line (I = constant or
J = constant) as a function of arc length. These changes will improve
significantly the user's ability to examine the solution.

5.3 PLOTTING ELF SOLUTIONS.

Plotting has historically been a problem in the development of the ELF codes for
various reasons. With any such code, plotting is the least transportable portion.
Because the ELF technique intrinsically depends on arbitrarily stretched,
non-regular grids, commercially available contour plotters do not apply. Those we
are aware of assume regular, cartesian grids. Furthermore, the new capability to
create cut-outs by "blanking" rectangular portions of the grid exacerbate the
problem, making a custom plotting program a virtual necessity. The ELFPLOT
code we have been using depends on the Tektronix PLOT 10 package running on
a VAX under VMS, producing plots on a Tektronix 4010 graphics terminal
emulator, with hard-copies made by a screen-dump to a dot-matrix or laser
printer. While a laser printer output is crisper, the resolution was still limited by
the emulator software. The resulting poor plots gave the incorrect impression that
the calculations were not very accurate (see Figure 11). For all these reasons, we
decided to make a concerted effort to develop high-quality graphical representations
of the high-accuracy ELF solutions.

The first improvement came from use of a better graphics terminal emulator -
SmarTerm 240 (Persoft, Inc., 465 Science Dr., Madison, WI. 53711). It provides
for PC emulation of DEC VT220-340 terminals, including TEK401x-series graphics
mode. More importantly, it provides hard--copy screen dumps with the full
TEK-401x resolution, as seen in Figure 12.

Next we restructured the Tektronix PLOT10-based ELFPLOT to facilitate
modifications, and expanded some of the capabilities. The new structure uses a
Modular LOADSLN subroutine to load a solution (from a file written by the
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companion SAVESLN subroutine called by the ELF program). From the main
ELFPLOT menu, the user chooses one of four plot types, i.e., surfaces, grid,
contours or function vs arc-length. For the latter two types, he chooses one of
the solution functions (potential, E-magnitude, electron density, conductivity,
temperature, power density and two new choices: Ex or Ey). The code for each
plot type is a separate module. Finally, all PLOT10--specific coding was
separated, except for certain parameter choices peculiar to PLOT10. Additional
options now include: (1) some axis control which is important to avoid aspect
ratio distortion for the first three plot types, (2) grid thinning for grid plots, (3)
a log-Z scale for contour plots (see Figure 13), and (4) actual vs normalized
arc-length in the fourth plot type. In addition, default labeling is more
centralized, to minimize repetitive user changes. Most importantly, the basic
algorithms and data structure were modified to accommodate the new "blanking"
option (see Figure 14 for an example). All these new capabilities have been
thoroughly tested.

In order to explore the use of color on screen and grey scales on hard copy, we
modified ELFPLOT to optionally output plot data in a form readable by the
PC-based GR.AFTOOL program (3-D Visions Corp., 412 S. Pacific Coast
Highway, Second Floor, Redondo Beach, CA 90277). This allowed us to
experiment with the use of color and 3D to enhance solution plots, and even
vector plots. This is not viewed as a replacement for the main ELFPLOT
technique, since GRAFTOOL is slow to use, and not transportable to mainframes.
However, the vector-based technique could be extended to produce CAD-readable
files, so solution contour plots for example, could be plotted by CAD right on the
design drawings, and perhaps even in 3D perspectives.

After much experimentation with use of color nd 3D surfaces to visualize 2D
solutions, we opted for a simpler approach, based on Los Alamos National
Laboratory's Common Graphics System (CGS). It is public-domain software fully
supported by LANL, and transportable across all computers and output devices
supported by LANL today, and for future expansion work. We got all the
documentation from LANL and designed and coded the new interface module,
between ELF-specific coding and calls to CGS routines. Upon this CGSCALLS
module which contains all calls to CGS routines, we built modified modules for
the four plot types, and debugged the whole new ELFPLOT code in short order,
demonstrating the soundness of this modular approach. In the future, changing to
another package of plot primitives, such as DISSPLA, NCAR or even a PC-based
system, could be accomplished by replacing only the CGSCALLS module. The
CGS-based ELFPLOT code has all the significant capabilities of the
PLOT10-based code, plus some new capabilities. Perhaps the most important is
the option to write graphs to a metafile, from which LANL post-processors can
produce full color slides, vu-graphs and prints as hard-copy output, some examples
of which are used in Section 7, below. There are some significant limitations
which include no true 3D capabilities and no true PC operating mode. However,
CGS gave us more control over such things as axis ticking. The resulting
ELFPLOT code is now considered the primary tool for graphically examining ELF
solutions, although the PLOT10-based ELFPLOT is also retained for archival
purposes.
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SECTION 6

DEMONSTRATION FIELD ANALYSES

6.1 SPEAR III.

The development of any large code like ELF is guided in practice by specific
needs or requirements of real problems. In order to insure that the
next-generation ELF codes would be responsive to real needs of the pulsed power
community working on SDI research, we needed a model problem, or paradigm.
We chose the SPEAR third launch payload. The general layout is illustrated in
Figure 15. We chose to concentrate on the main experiment at the top of the
figure, which is essentially a large Langmuir plasma probe.

The field analysis was divided into two scale sizes: a "big picture" and a "close
look". The big picture simulated the plasma sheath which would form when up
to 45 kV are applied to the 20 cm gold-plated sphere at the end of the support
boom. One-dimensional analyses of the equivalent spherical symmetry problem
demonstrated that the field distribution would not significantly differ from vacuum
solutions except within a few cm of the sheath edge (see Section 4). Therefore,
we ignored space-charge effects inside the sheath, and merely imposed zero voltage
on a far-field boundary of approximately the correct size and shape. That shape
is distorted from spherical into a cardioid shape by the voltage distribution
imposed by the voltage grading structure on the support boom. That grading
structure assures linear grading from the current-collecting sphere to a physically
fixed point connected to spacecraft ground.

Thus, the boundary conditions for the "big picture" field analysis were as follows:
1) On the axis representing the idealized boom, a linearly graded voltage is
imposed. 2) On the cardiod outer boundary, zero voltage is imposed. 3) On the
current collecting sphere, full voltage is applied (nominally 45 kV). 4) On the
axis of rotation on the other side from the boom, a symmetry condition is
imposed (zero normal gradient). The challenge was the large difference in scale
size between the sheath edge and the current-collecting sphere. That challenge
was met with a new grid-generation method which conserves grid stretching
imposed on the grid boundary nodes. The big picture solution is illustrated in
Figure 16, which shows color-coded equipotentials. Unfortunately the quality of
the Iris display eroded in transferripr' the screen image to a color printer, and
eroded even further by transferring .o olack and white. A close-up of the region
around the sphere is shown in Figre 17. The white circle represents the sphere
chosen as the outer boundary for the "close look" analysis.

The "close look" analysis examines the effect of the fine structure of the boom
voltage-grading bushing on the electric field. A visual examination of the design,
shown in Figure 18, shows that enhancements are to be expected at the ring
edges, where a small radius of curvature is found. The highly re-entrant
geometry of the rings was idealized in the cavities, since the primary interest was
in the enhancements. Figure 19 shows the boundary geometry in physical space,
and the mapping to the computational space with grid cut-outs.

The challenge with the close look analysis was to maintain the smoothness of the
grid, so sudden changes in cell size would not distort the solution. In that
regard, control lines, shown as dashed lines in Figure 20, were invaluable. The
final resulting grid is shown in Figure 21a and b.

31



The boundary conditions were all of the specified-voltage (Dirichlet) type. Voltage
grading beyond the second bushing ring was idealized, but the two rings modeled
geometrically are at the correct voltages. The outer boundaries are at fixed
voltage distributions obtained by bi-linear interpolation from the "big picture"
solution.

The resulting field solutions are illustrated in Figure 22a and b. It shows
contours of E-magnitude (not E-vector lines) over the computational grid in a
close-up of the area near the rings. On the Iris full-color screen, the grid is in
a subdued grey, and the contour lines in bright colors. The main field
enhancements are at the ring rounded edges between rings, as expected.

6.2 FLOATING BODY.

A second problem used to demonstrate the power of the new ELF flexible
topology capability in both 2D and 3D was the "floating body" test case. The
original ELF paradigm assumes (only) two electrodes, mapped to opposing grid
boundary surfaces (nominally 1 and 2), with orthogonal boundaries (surfaces 3 and
4) normally being symmetry or far-field boundaries. To review, the topological
relationship of the boundaries is illustrated in Figure 23.

A true floating body would not touch any of the outer boundaries. The new
ELF capability to blank out any selected area(s) of the grid was used to create a
rectangular cut-out of logical space, which maps to an elliptical floating body.
By imposing a fixed voltage on all nodes along the interior boundaries, the
floating body simulates a cross-section through a long, rounded electrode between
the main electrodes. Surface number 1 is a plane electrode, and surface number 2
is a Rogowski electrode. The logical plane relationship is shown in Figure 24.
The mapping to physical space can be visualized in the plot of the computational
grid in Figure 25.

The 2D solution field distributions are shown in Figures 26 and 27. The features
to notice are the E-magnitude maxima on the top and bottom of the floating
electrode, and the minima on the right and left. These are proper and expected
features. It should be pointed out that the choice of the positions corresponding
to the corners of the logical grid cut-out box, and the stretching of the grid to
keep grid lines from pulling away from the floating body were carefully studied.
Poor choices could result in poor grids with inadequate resolution in key areas,
resulting in distortions of the solution. With the greater power of the new ELF
capability to blank out areas of the grid comes greater responsibility on the part
of the user to make wise choices.

When the grid "blanking" capability was extended to 3D, it was demonstrated
with a 3D analogue of the 2D floating body test case. In essence, the 2D
geometry was extended in the Z direction, like an extrusion, and then swept
through a 90" rotation using surface number 3 as the axis of rotation. The result
is that the floating body looks somewhat like a candy cane, and the outer
boundaries resemble Figure 28. The E-field 3D solution is essentially the same as
the 2D solutions for cross-sectional cuts anywhere along the linear extrusion. In
the rotated region, the additional curvature in the other direction produced
localized maxima on the "candy cane handle" surface. Unfortunately, we have no
mechanism to make hard copies of the striking 3D full-color graphics used to
examine the 3D solutions on the Iris workstation. The Reduced Instruction Set
Computer (RISC) architecture makes it possible to animate 3D color views, giving
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the illusion that the viewer is "flying" around the 3D object. This is a powerful
3D solution visualization technique. Unfortunately it is highly machine-dependent,
and generalization of the technique is not within the ELF2 contract scope.
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Figure 16. "Big Picture" solution equipotentials, showing

cardioid-shaped outer boundary.
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Figure 17. Close-up of "Big Picture" solution, with close-look

outer boundary inserted.
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SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 ACCOMPLISHMENTS AND STATUS.

There are three specific accomplishments which can be considered noteworthy and
one with mixed results. There also are limitations to the resulting new-generation
ELF2 codes. In Section 8.1, we summarize the good, the bad, and the mediocre.
In Section 8.2, we discuss recommended follow-on development to address the
ELF2 code limitations.

The first significant development was the new grid generator. The ability to
blank out selected portions of the grid provides a significant topological flexibility.
This is an unexpected bonus. Our original plan was merely to extend the
Phase I topology to a couple of variations. This new capability significantly
exceeds that minimum requirement by giving the user the power to customize the
grid topology to match the physical geometry. This is invaluable in dealing with
complex geometries like the highly re-entrant bushing rings or floating bodies. In
addition, the new (Thomas-Middlecof) grid generation algorithm's ability to
conserve the boundary nodes' stretching characteristics is invaluable in handling
situations where there is a great difference in scale-sizes of interest.

The second noteworthy success was in the area of user-friendly input, especially
the new geometry input technique developed. The instructions-driven approach
makes it possible for non-Fortran-literate users to build complex geometries from
single elements (straight lines, ellipses, superellipses and distorted "quadrants").
The possible combinations are literally limitless, and other elementary shapes could
easily be added to the "menu" by any competent Fortran programmer. Certain
"exotic" shapes, such as blending of a sinusoidal "bump" on a superellipse, will
require a Fortran-literate user to modify sample geometry routines. It should be
noted that this new technique does not relieve the requirement that the user must
be competent in the practice of analytical geometry. It only relieves him of the
requirement of being Fortran literate. In addition, the general implementation of
a "changes-only" input technique will significantly improve interactive input and
the new user's learning curve. The succinct, plain-English prompts are not the
same as extensive multi-level help utilities, but they are a step above mnemonic,
but often cryptic, variable names. For example, "Axis of revolution = X, Y or 0
(neither)" is better than "MCYL = 0 for planar, 1 for axisymetric or 2 for
radial". Furthermore, the coding is transportable, unlike pop-up menus, pull-down
windows and other graphical input techniques. A significant degree of modularity
was implemented, which will facilitate development of a batch mode in the future.

The third area of success was in output, specifically the plotting of solutions. As
with input, greater weight was given to code transportability than to maximum
aesthetic impact. That drove our choice of the public-domain Common Graphics
System developed and maintained by the Los Alamos National Laboratory. The
optional use of color makes it useful in interpreting graphical results, but not
indispensable or required. Furthermore, the great degree of modularity
implemented in the restructured coding will greatly simplify the task of adapting
the ELFPLOT code to new graphics packages and environments in the future.

Mixed results are attributed to the space-charge-driven E-solver developed for the
Low Earth Orbit plasma sheath problem. Our 1-D analysis of the physics led to
a minor improvement in the methodology used in the NASCAP/LEO codes, but it
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also showed that it makes little difference to fields near the current collector.
The problems associated with locating the sheath edge within the ELF
finite-differences structure were beyond the ELF2 scope, but not because the
plasma physics nonlinearities could not be handled by the ELF numerics. A
solution strategy was identified, but pragmatism caused us to continue with a
vacuum analysis of the SPEAR III fine details.

With every increase in the power of a complex code like ELF comes increased
responsibility for the user. The new flexible topology gives the user the power to
tackle field analyses problems with challenging, complex geometries, but it also
places a burden on the user to make wise choices. The new user-friendly input
techniques implemented in ELF2 ameliorate the added difficulties, but ultimately
there is an added requirement for user expertise that no clever user-friendly input
techniques will replace.

Another limitation to the ELF2 achievements was in the areas of integration and
documentation. The new grid generator was developed on an Iris RISC
workstation, and the test cases were run on the Iris as well. The code was
ported to the DNA VAX at Los Alamos as a means of delivering the final code,
but it has not been exercised on the VAX. While that suggests the possibility of
subtle compatibility problems, the ANALYZ results identified no code
transportability issues which would cause problems in a VMS environment.
Furthermore, although new i/o interfaces are well documented internally, we never
integrated that documentation into a single users manual as we had hoped.

Finally, the ELF2 codes are limited to electric field analysis; no magnetic field
information is calculated. There is an option in ELF to calculate the effect of a
constant B-field on the conduction currents, but that is not the same as
calculating B-fields. While the elementary magnetostatic field equations are
similar (elliptical partial differential equations), they are more complicated in that
they do not reduce to a scalar potential equation, but remain vector equations in
any formulation.

In recognition of these limitations of the ELF2 codes, we offer the following
recommendations.

7.2 RECOMMENDATIONS FOR FOLLOW-ON EFFORTS.

Foreseeing that the funded ELF2 tasks would not fulfill all requirements for
electric (let alone magnetic) field modeling and analysis in the pulse power
community engaged in SDI-related research and development, we included five
specific pre-priced but unfunded options in the ELF Phase II contract summarized
in Table 1.

This section lays out our recommendations for follow-on efforts both within and
beyond the scope of those options. Rather than paralleling those options, we will
discuss our recommendations here in the order of our perception of their priorities.

7.2.1. User Friendliness.

We use the term user-friendly to encompass moderate tasks which will
significantly enhance the ability of a third party (any other SDI contractor or
member of the Space Power Consortium) to effectively use the ELF2 code
capabilities. One recommended action is to complete the integration and
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check-out of the delivered codes in VAX/VMS (or any other chosen computational
environment). Another recommended action is to integrate documentation on how
to use the new capabilities and i/o techniques into the ELF Users Manual.
Finally, we recommend implementation of a normal gradient boundary condition
within the structure of the user-friendly interior boundary conditions (INTBC)
input module. All three actions would cost about 30K, and do not directly fall
under the scope of any one pre-priced option, although portions of these mundane,
but necessary tasks could be accomplished under combinations of the ELF2 options,
as we comment on below.

7.2.2. Generalized Geometries.

This falls under the scopes of Options 2 (2D) and 3 (3D). It is now clear that
the best methodology for achieving maximum topological flexibility within the ELF
finite-differences structure is to extend the grid blanking capability with the
additional option of diagonal interior boundaries. Diagonal "cuts" will permit
smoother matching to complex geometries, because a 45" bend in logical space
represents a much milder discontinuity than a sharp 900 bend. To illustrate this,
consider the conceptual boundary mapping of an Electro-Static Quadrapole (ESQ)
geometry shown in Figure 29. Notice that all physical 900 corners map to logical
900 corners. This correlation between the grid logical connectivity and physical
boundary conditions can be achieved for any topology with the diagonal cut
option.

Generalizing to 3D involves more than sweeping 2D topologies in a third direction.
In 3D there are various classes of diagonal cuts (110, 101, 011, 111 in Miller
index notation). The 111 Miller index type of 3D diagonal has no 2D analogue,
and will require special treatment.

Except for truly difficult 3D geometries (e.g. linked toroids), extension of 2D
algorithms to 3D is relatively straightforward, but very tedious. Before developing
the non-dielectric (pre-Phase I) 3D ELF code, we estimated the algebraic
manipulations would require over two man-years. That was considered infeasible
not only economically, but also because of the great difficulty of assuring
error-free performance by the programmer. The solution was found in use of the

artificial intelligence based symbolic manipulation program MACSYMATM
(Ref. 10). Our approach to producing 3D versions of 2D codes will rely on
MACSYMA to derive and code the very complex algorithms.

The pre-negotiated price of $82K on Option 2 (2D) will suffice to implement the
concept, with some of the subtasks described in Section 8.2.1, above, included.
The pre-negotiated price of $62K for Option 3 (3D) is just sufficient for
implementation, but not for extensive documentation.

7.2.3. Input/Output Enhancements.

There are many computer solid modeling products which could define geometries
for the ELF code. Much human engineering has gone into their design to make
them very user-friendly. The huge commercial success of Computer Aided Design
(CAD) programs, for example, is due as much to their ease of use as to their
power. The question naturally arises, why not develop an interface for ELF to a
commercial solid modeling package? The primary disadvantage is that such
commercial packages have limited flexibility in the types of geometrical elements
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that can be used: straight lines, circle arcs, and maybe ellipses in 2D;
polyhedrons; pieces of spheres and maybe ellipsoids in 3D. The power of ELF to
accurately analyze literally arbitrary shapes would be wasted without a mechanism
for defining arbitrary shapes. If the shape can be defined with an analytical
geometry ormula, the formula can be coded in Fortran. However, as the new
ELF2 interface input technique has shown, most geometries are made up of simple
shapes, and much can be done with combinational techniques, so the user need
not change a single line of code except on rare occasions.

We experimented with interfacing output to a commercial graphical program, and
the vector-based technique can be adapted to produce CAD-readable output files.
However, what we are more interested in here is interfacing input. Pre-priced
Options 4 (2D) and 5 (3D) address interfacing ELF to the solid modeling code
PATRAN.

PATRAN is a powerful geometry definition package for finite element codes.
Because of its wide use, it is desirable to couple PATRAN to the ELF codes, so
its powerful features can be exploited. However, since it is intended for use with
finite element codes, there are many challenges in its application to a finite
difference code like ELF, especially in 3D.

The PATRAN output is a collection of nodes (points in space) and elemenia
(parametrically defined lines connecting nodes). The parametric definitions are well
suited to the ELF geometry definition requirements in 2D. However, in 3D, ELF
requires definition of surfaces enclosing the computational volume by means of
logically cartesian grids. Not only must all the cells be quadrilateral (none
triangular), but there must be exactly as many cells in each row (or column) as
in every other. A general methodology for achieving this will be developed.
Therefore these two options are costed assuming "cost plus fixed fee".

Under Options 4 and 5, Tetra and Ecodynamics will study the PATRAN data
files, define the ELF requirements, and design and implement two interface
programs (2D and 3D) to (a) read and interpret the PATRAN geometry files, and
b) generate the required boundary surfaces.

It is assumed and recommended that work on these options not be started until a
decision has been made on Options 3 and 4. The ELF geometry definition
requirements may be significantly different for the general geometry methodology
implemented in Options 3 and 4.

The pre-negotiated costs for Options 4 and 5, $75K and 877K, respectively, are

adequate to accomplish what's described above.

7.2.4. Self-Consistent Magnetic Field Effects.

Option 1 (B-fields) would modify the ELF codes to include a self-consistent 3D
treatment of external and self-generated B-fields.

There are many devices in SDI-related technologies where strong external B-fields
play an important role, such as ion sources, Radio Frequency Quadrapole (RFQ)
stages and Linear Accelerators (LINACs) for Neutral Particle Beam (NPB)
weapons. Space plasmas are at such low pressures (<0.01 Torr) that charge
transport is ballistic, rather than collision-dominated. Furthermore, it is believed
that the geomagnetic field significantly affects spacecraft charging. The design of
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space plasma shields may be affected by both phenomena. Many semiconductors
and some insulators are non-isotropic. Externally imposed currents are critical in
excimer lasers, free electron lasers, LINACs and other devices. Clearly, a tensor
ELF code with selfl-nsistent 3D magnetic field effects is needed for many SDI
applications, and would be useful for many others, as well.

Under a contract with Sandia Corporation, Tetra and Ecodynamics implemented a
scalar conductivity formulation of time-dependent space-charge effects, according to
the formalism developed in Phase I. The application is for modeling fast
streamers in laser-trigered gas gap switches. The "scalar" time-dependent
space-charge ELF code will handle many other applications such as arcs and
surface flashover. Corona discharges, outgassing, thermal instabilities, and mass
movement can all be adequately modeled as long as scalar conductivity adequately
models the currents. Corona discharges are probably critical limiters of space
power distribution system performance. Outgassing, even though stabilized in
hundreds of hours can significantly affect the space plasma environment of a
"dormant" spacecraft if systems are heated just before activating the battle
functions of the satellite. Thermal dependences of conductivity dominate in MHD
generators, especially in the boundary layer of the MHD channel. In fact, the
lower conductivity in the wall-cooled boundary layer causes most of the voltage
drop to occur across that layer, limiting the MHD generator performance. All
these phenomena can be analyzed with a scalar conductivity as long as components
of the c ,rrent vector transverse to the E-vector can be neglected.

If the J-vector could be guaranteed to be aligned in the same direction as the
E-vector, we could always define a scalar conductivity a - J/E. A magnetic
field causes a turning of the currents in the ExB direction. Thus, the
conductivity becomes a tensor, just as in non-isotropic media. At low enough
pressures, the electron's inertia can cause the currents to "lag" behind a changing
E-field. Externally-imposed currents, like those from an electron gun, bear little
relationship to the E-field at all. All these phenomena require reformulation of
the ELF field solver.

An external B-field modifies the calculated current distribution linearly. That is,
the modification does not affect the B-field used to calculate the effect.
Self-generated B-fields, however, are nonlinear. The calculated current distribution
determines the induced B-field, which adds to the linear external B-field. The
total field affects the current. This nonlinear feedback loop adds to the
computational complexity, but it is the same class of nonlinearity as already
handled in the ELF codes. The combined nonlinear loop involves using estimated
E and B fields to calculate the J distribution, then using the sensitivity of that
to calculate corrections on the E and B fields.

For any physically realistic current model, the current distribution can be
calculated from initial conditions and an estimated E-field. Assuming J is
primarily local, we can numerically calculate a tensor differential conductivity, with
which we can calculate correction terms for the E-field distribution. This method
will converge on the field solution as long as noulocal current sources do not
dominate. This will be one of the limitations of the code produced in Option 1.

Another limitation is the assumption that the field time variations are slow enough
(compared to the speed of light) that we can assume field information travels
virtually instantaneously across the computational grid. This avoids the very
tedious and costly procedure of numerically computing properly "retarded"
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potentials. Within those limitations, the formulation will be based on the Poisson
equation combined with the current conservation equation:

-4 -4

v.(ft) = -p = I • dt - P ld (7.1)

and its magnetic analog:

VIA = 3 (7.2)

The driving function will be a user-modifiable current module, which will calculate

I as a function of P,, 9, space, time and initial conditions. Boundary conditions

will be incorporated for the magnetic vector potential A analogous to the Dirichlet
and Neumman conditions on the scalar potential 0.

The resulting .illy coupled Electro-Magnetic field code will include the effects of
time-dependent space-charge. It will be tested with a sample kinetics model
which will be extensible to collisionless plasmas.

Since the formulation of 9-field effects is intrinsically three-dimensional, we will
implement it in 3D directly, without a 2D phase first. However, a 1D prototype
may be used to develop the algorithms and test the sample current module.
These algorithms will then be generalized to 3D within the structures of the

unsteady space-charge ELF code, making use of MACSYMATM for much of the
code generation.

In order to insure an orderly progression, first only external B-fields will be
considered, and then the self-generated B-field will be incorporated in a full
nonlinear coupling. That is, the B-field induced by the current distribution will
be included in calculating the effects of the total B-field on those currents.
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Table 1. Phase II options.

1. Self-Consistent B-field Codes.

Develop a self-consistent 3D treatment of magnetic fields within.
The ELF boundary-fitted grid structure include external B-fields and
nonlinearly coupled effects of B-field induced by calculated currents.
Include time-dependent space-charge effects will be tested with a
kinetics model.

2. Generalized Geometries in 2D.

General geometry methodology which will allow a single 2D code to
be used for virtually any 2D geometry.

3. Generalized Geometries in 3D.

Implement the same methodology developed in 2D to a 3D general
geometry ELF code.

4. 2D ELF Interface With PATRAN.

Develop an interface program to use geometry definition files produced
by PATRAN to define the boundaries for the 2D ELF code.

5. 3D ELF Interface With PATRAN.

Develop an interface program to use geometry definition files produced
by PATRAN to define the boundaries for the 3D ELF code.
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APPENDIX A

TEST CASE FOR SPACE CHARGE DRIVEN OPTION

A.1 SPACE-CHARGE FORMULATION.

The ELF electric field code can be used to calculate fields in the plasma sheath

around a high voltage Low Earth Orbit (LEO) satellite by solving the nonlinear

nonhomogeneous Poisson equation

V24 = -pleo (A.1)

if the space-charge p is dominated by local dependencies. That, in fact, is the

case for the steady-state solution (Ref. 1):

Pl'o " [1 Rn[R) I ](A2
=/ C. d2 1+ Fi Ie 0/k~l ' j"A2

where kG is the plasma temperature in eV (notice e4/kO is unitless), and the

Debye length is given by

Ad2 = ok (A.3)no ey

where no is the background plasma number density.

The geometric convergence factor can be estimated for general geometries from the

local potential 0 and E-field by a fit to spherical diode results (Ref. 2) as:

(Ro/R)2 = 2.29 IE Ad e/kO#l. 26 2 Ik0/e~I .501 (A.4)

For now, let us consider only a positive sheath, which expels positive ions and

captures electrons. (The negative sheath can be treated similarly, as we shall

show below.)
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The calculation of p/co has been coded in subroutine SPCHRG, which initializes

the plasma parameters k# and no, and can be called by the main ELF program,

much as a user-supplied conductivity module is now. Thus ELF can calculate

field solutions equivalent to the NASCAP/LEO solutions (Ref. 3), through which a

particle-pushing code can subsequently "push" electron orbits to calculate the

current lost to open orbits (electrons that escape).

A.2 ELECTROSTATIC BENCHMARK.

The purpose of this Appendix is to derive an independent solution for a simple

spherical geometry to serve as a benchmark for checking out the full 2D code.

The space-charge--limited current between two concentric spheres was derived

analytically by Langmuir and Blodgett (Ref. 4), and even generalized to infinite

planes and cylinders. The analytical solution for concentric spheres is

4 e tL'-5 in Electro-Static Units (ESU) (A.5)

or

= -m-- in International System of Units (ISU) (A.6)"~ ~ = n4 a2

We will use ISU in this Appendix. This analytical solution is not in closed form,

however, since the unitless parameter a can at best be given by a series:

= 7 - 0.3 72 + .075 73 - .0143182 74 + .0021609 75 (A.7)

-. 00026791 76 + ... (A.8)

where y = 4(R/Ro); for our purposes, Ro is the sheath radius, so 7 is negative.

Langmuir and Blodgett's Table II (attached) gives calculated values of a2 for

ratios Ro/R up to 500 (column labeled "(-a)2," for our purposes). For small

ratios Ro/R < 1.05, the above serieg is more accurate than table interpolation.

The thermal current is given by the hemispherical directed flux across an ideal

sharp boundary

Jth = no e V57&J~r (A.9)
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However, since the Langmuir-Blodgett theory ignores transverse charge motion, we

get the correct sheath size only by using the omnidirectional thermal flux across

the sheath boundary (well-defined because Ad<<Ro):

"= 41 R0 2 no e A,0ZJ (A.10)

Combining both equations for e (which must be independent of R to conserve

current), we get

4 a2  . Rno v'e (A.11)

(Notice kO/e is numerically the plasma temperature in eV.)

Expected ranges for low- to high-density LEO conditions (Ref. 5) are: 1010/m 3

< no < 1012/m 3, 0.3 eV > k8 > 0.1 eV, .04 m > Ad > .002 m, and 10-4 A/m 2

< jth < 10 - 2 A/m 2. The NASCAP/LEO calculations for a spherical collector of
radius Rc = 10 cm charged to Vc = +45 kV showed a sheath of about 5 in

radius (Ref. 3), using no = 5x1010/m 3 and kG = 0.1 eV. For Ro/Rc = 50,

Table II gives (-a)2 = 395.3. Calculating Ro from

R0 2 = 4 co 1 A (A.12)

and iterating on a, using interpolation on Table II values, we get Ro = 5.607 in.

Given the final interpolated value of (-a)2 for Ro/Rc = 56.07, we can calculate

values of 0 vs R from the tabulated values of (-a)2 versus R/R from

[R - ao2 (A.13)

The attached plots show the PHI versus R curves for various conditions. The

first shows the nominal case (labeled "SPEAR I"), along with a family of curves

for the same plasma parameters, but different boundary conditions. Notice any

point along any curve represents an inner boundary condition (Vc, R) which is

sufficient (with the implied outer boundary condition 4 -4 0 as R -4 m) to define a
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unique solution for given plasma parameters. The second plot shows the effect for

the nominal boundary conditions (Re = 0.1 m, Vc = 45 kV) of a range of
plasma parameters (109-1012 e/m3 and 0.1-0.4 eV).

We can calculate the E-field profile by finite differences, or by integration of the
space charge. Poisson's equation in integral form for spherical symmetry becomes:

Ri

EcRC2 - EjRi2 = f 8 R2 d& (A.14)
Rc

Since the field is nearly Coulombic except near the sheath edge, we shall assume

between R-grid points that

O(R) u [R]aave /R (A.15)
Substituting into

p(R) = noe [RD]2 5 (A.16)
we get

ti
ECRC2 - E R2 . ne Rol V77-i [(eR)-o]ave f t. 5 d

Ic
- Ro2 iy [1/" i-l+/y-'i] [RcL --Ril-5]/3 (A.17)

Initializing the field at the collector to Ec = Vc/R, the above produces an
estimate of the field at the first interior R-grid point. Applying the same
relationship to any two neighboring R-grid points, we can calculate the E-field

throughout the sheath by marching out to the sheath edge. The resulting E-field
distributions, shown in the next plot for conditions corresponding to the first
0-plot, is compatible with estimates by finite differences.

Finally, if we use those E estimates in the Katz-Mandell algorithm, we get
independent calculations of the space charge. The next plot compares the Katz-

Mandell space-charge calculations to the direct Langmuir-Blodgett space-charge

p(R) = noe 2 (A.18)
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Notice the disagreement near the sheath edge. The Langmuir-Blodgett

approximation assumes a perfect discontinuity at the sheath edge (hard edge

approximation) whereas the Katz-Mandell formula approximately accounts for the

transition to a Debye screening region.

For the assumed no and kG, the thermal current density is 4.238x10- A/M 2 ,

giving a total collected current of

41rR0
2 jth = 167.4 mA (A.19)

compared with SPEAR I measurements of 51 mA (Ref. 3).

Parrot e t a l (Ref. 6) derive a correction factor of 1.45 for the above thermal

current due to the effect of weak long-range fields. This does not increase the

above current estimates by 1.45 directly, because the increased current increases

the space charge, thus decreasing Ro. The effective Ro' can be obtained by using
no' = 1.45 no, which produces Ro' = 5.049 m for 45 kV and the above

conditions. The corrected current is then 47r (Ro')2 1.45 ith, which evaluates to

196.8 mA. The Parrot correction increases the Langmuir-Blodgett calculated

current by somewhat less than a factor of 1.45. The discrepancy with SPEAR I

experimental measurements in due primarily to the effect of the geomagnetic field.

A.3 GEOMAGNETIC FIELD EFFECT.

For the SPEAR I flight path, the geomagnetic field was B = 0.4 gauss

(= .41-4 tesla). Parker and Murphy (Ref. 7) derive a limit on current collected

by a conducting sphere in a constant, homogeneous B-field, assuming a Coulomb

potential well. (Notice the Langmuir-Blodgett solutions are nearly Coulombic

except near the sheath edge.) The Parker-Murphy collection radius is given by

BgPiM2 1 + vcem /(wRc) (A.20)
RC2

where
w = B e/m = 7.035x106/s for B = 0.4 gauss (A.21)
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Thus, for the nominal case, Rp. = 1.894 m, and the Parker-Murphy current limit

is:

2xr Rp=2 ith = 9.552 mA (A.22)

The Parker-Murphy theory assumes that V.E is virtually constant over a

gyroradius. In fact, the gyroradius

Rg = Ve/w = v*Vce/m- / (Be/m) (A.23)

evaluates to 17.88 m for Vc = 45 kV. At some critical radius R*, the

gyroradius for the potential at that distance equals R*. We can calculate that

critical radius from

O*R* = VcRc (A.24)

Rg -Rg W =R g V&[U = R* (A.25)

-4 (R*)1. 5 = RgX (A.26)

For the nominal conditions, R* = 3.174. If we use that instead of Rp., the

modified Parker-Murphy current estimate is 26.83 mA.

If we assume the effective current-collecting sheath surface is distorted into an

oblate spheroid (as if the Langmuir-Blodgett sheath were "pinched" in the

direction normal to the B-field), we can estimate the collected current by using a

geometric average radius. Using the modified Parker-Murphy radius

41r jth Ro R* - 94.79 mA (A.27)

Using the unmodilied radius

41r ith Ro Rp. = 56.55 mA (A.28)

That ; close to thc SPEAR I measurement of 51 mA, but that does not prove

the above method is generally accurate. The attached plot compares the complete

range of SPEAR I current vs voltage measurements to all five theoretical
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calculations: Langmuir-Blodgett, Parker-Murphy, modified Parker-Murphy, and the

two "oblate spheroid" formulas.

What this exercise really proves is that a complete calculation of the collected

current is rather complicated, and no simple model can be expected to produce

accurate results, even for a spherical collector. Is the Langmuir-Blodgett electro-

static field solution invalidated by the magnetic field effect? Consider the

following argument.

To first order, since the magnetic force is energy-conservative, the velocity-

differential effect on the space-charge distribution remains unaffected, except for

the current obliquity (angle between electron paths and radial direction). Clearly

a 17-m gyroradius near the collector has a negligible effect. The space-charge

will be most affected by the B-field near the edge of the sheath, where the

electrons entering the sheath are still nearly thermal. For 0.1 eV electrons in a

0.4 gauss B-field, the gyroradius is

Rg(min) = /2I7mJi -- 2.7 cm (A.29)

which is comparable to the Debye length. A difference of a few cm in the

sheath radius in the direction normal vs parallel to the B-field hardly invalidates

the assumption of spherical symmetry. Even though the B-field drastically reduces

the collected current, it does not significantly alter the Langmuir-Blodgett

electrostatic field solution. The Langmuir-Blodgett 4, distribution provides us with

the benchmark we need to validate the coding of the space charge driven ELF2

option.

The Langmuir-Blodgett sheath calculations described have been coded in program

SHEATH on the PC-AT. SHEATH can be used to generate benchmark 4 vs R

curves for validating the 2D ELF implementation with a simple concentric-spheres

geometry. The appropriate outer boundary condition for the 2D case is 4, = 0 at

a far-field sphere of radius Rb > Ro. The actual sheath boundary will fall out

naturally from the 2D calculations, although it may not be as well-defined as in

the benchmark model. That is because the space-charge does not vanish exactly

until 4 = 0 exactly. In fact, this is physically correct; the sheath boundary is
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"fuzzy" on a scale size of Ad. In the 2D ELF code, we should define the sheath
boundary as the 2D contour where the calculated potential is 0 = kO/e, which
may be less than the calculational tolerance. Beyond this nominal sheath
boundary, the potential drops off quickly with a scale length of Ad. (The small
fields beyond Ro lead to the Parrot correction).

4.4 NOTES ON THE NEGATIVE SHEATH.

The above derivation is for a positive (potential) sheath, which traps electrons and
excludes (positive) ions. If we reverse polarity, a negative sheath forms which
traps ions and repels electrons. The high energy ions impinging on the current
collector will free electrons, creating a steady-state out-going flux of electrons.

For conditions typical of the SPEAR I experiment, each ion will create about 10
electrons (Ref. 3). Therefore, the electrons will dominate the total current.
However, due to their much larger mass, the ions will dominate the space-charge.
This keeps the space-charge calculation the same (except for sign), since the
particle mass does not enter in the formula for p = fi(o) and cancels out in the

benchmark calculation of 4 vs R. Therefore, the positive sheath model and
benchmark calculations apply to a negative sheath as well, with only a sign
change on the potentials.

Notice the Parker-Murphy radius is very different for ions, due to their much
larger mass. If we use an average of 15 amu (between N and 0 atoms), mi z
2.5x10-26 kg. For B = 0.4 gauss, the ion gyrofrequency is only about 250/s,
giving a gyroradius of about 3 kin, and R* z 100 m. Clearly, the geomagnetic

field will have a negligible effect on the ion current collected by a negative

sheath.
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Table 2. a2 as function of radius.

r,-radius of emitter; r-radius at any point P;
£2 applies to case where P is outside emitter, r > r;

(-a)s applies to case where P is inside emitter, r0 > r.

or&- or (2
re r re r

1.0 0.0000 0.0000 6.5 1.385 13.35
1.05 .0023 .0024 7.0 1.453 15.35
1.1 .0086 .0096 7.5 1.516 17.44
1.15 .0180 .0213 8.0 1.575 19.62
1.2 .0299 .0372 8.5 1.630 21.89
1.25 .0437 .0571 9.0 1.682 24.25
1.3 .0591 .0809 9.5 1.731 26.68
1.35 .0756 .1084 10 1.777 29.19
1.4 .0931 .1396 12 1.938 39.98
1.45 .1114 .1740 14 2.073 51.86

1.5 .1302 .2118 16 2.189 64.74
1.6 .1688 .2968 18 2.289 78.56
1.7 .208 .394 20 2.378 93.24
1.8 .248 .502 30 2.713 178.2
1.9 .287 .621 40 2.944 279.6.
2.0 .326 .750 50 3.120 395.3
2.1 .364 .888 60 3.261 523.6
2.2 .402 1.036 70 3.380 663.3
2.3 .438 1.193 80 3.482 813.7
2.4 .474 1.358 90 3.572 974.1

2.5 .509 1.531 100 3.652 1144
2.6 .543 1.712 120 3.788 1509
2.7 .576 1.901 140 3.903 1907
2.8 .608 2.098 160 4.002 2333
2.9 .639 2.302 180 4.089 2790
3.0 .669 2.512 200 4.166 3270
3.2 .727 2.954 250 4.329 4582
3.4 .783 3.421 300 4.462 6031
3.6 .836 3.913 350 4.573 7610
3.8 .886 4.429 400 4.669 9303

4.0 .934 4.968 500 4.829 13015
4.2 .979 5.528 600 4.960
4.4 1.022 6.109 800 5.165
4.6 1.063 6.712 1000 5.324
4.8 1.103 7.334 1500 5.610
5.0 1.141 7.976 2000 5.812
5.2 1.178 8.636 5000 6.453
5.4 1.213 9.315 10000 6.933
5.6 1.247 10.01 30000 7.693
5.8 1.280 10.73 100000 8.523
6.0 1.311 11.46

(Reproduced from Lansmuir and Blodgett, 1924)
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APPENDIX B

ALTERNATIVE TO MANDELL FIT FOR CONVERGENCE FACTOR

The fields in a Low Earth Orbit (LEO) space plasma sheath are driven by the

space-charge p, which is dominated by local dependencies in steady-state (Ref. 1):

--Ad 2 1l + X-r I e 0/kOl 1. 5 B1

where kO is the plasma temperature in eV (notice eo/k0 is unitless), and the

Debye length is given by

Ad2 = fo kO (B.2)

where no is the background plasma number density.

It is computationally convenient to estimate the geometric convergence factor

(Ro/R)2 for general geometries from the local potential 0 and E-field. Mandell's

fit (Ref. 2):

(Ro/R)2 = 2.29 IE Ad ekOl1.262 Ik01e e "501 (B.3)

purports to do just that. However, in trying to understand the detailed field

distributions near the sheath edge, we found some apparent inconsistencies.

Mandell (Ref. 3) explained that the fit actually comes from idealized spherical

solutions of the Langmuir-Blodgett equations (Ref. 4). This Appendix documents

an alternative to Mandell's fit based on a return to the basic 1D solutions.

The problem seems to be that Mandell's fit is sub-optimized over too wide a

range of parameters. It specifically has trouble behaving reasonably in the region

near R.. The calculated Ro values using Mandell's fit are not badly off, but

there is a risk that the inconsistencies could cause subtle problems with more

accurate field solvers, like ELF2.
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If you assume spherical symmetry, the problem becomes 1-dimensional. It is then
possible to numerically integrate the simple ODE system:

= -E and d( = pR 2  (B.4)

This becomes an initial-value problem if we have both E and 0 defined at some
value of R. We define the sheath boundary Ro as the place where 0o = k#/e
(plasma temperature in volts). If we guess Eo z Oo/Ad, and integrate out from

R using the Livermore Solver of ODE's (Ref. 5), we find that 0 goes negative,
indicating the initial Eo guess is too high. If E goes negative, that indicates the

Eo guess is too low. A "high/low game" iterative procedure with a Newton-

Raphson predictor quickly finds the correct Eo value within machine precision.
We then use that initial Eo value to integrate from Ro in to R, to generate the
"exact" solution.

That lead to the the following alternate methodology for estimating the
convergence factor from local E, 0 fields:

1. Define a "model" 1-D problem by choosing 0c, Rc (and plasma parameters

0, no). From the Langmuir-Blodgett solution (Ref. 4), we can estimate Ro by
iterating on

Ro2 = 4 co 1 " (B.5)

where a is a function of Ro/R, interpolated from Langmuir & Blodgett's Table II.

2. The exact solution for that Ro value provides a data base: E, 0, R

arrays. The Eo value calculated in the process defines the second boundary
condition for the multi-dimensional Stefan problem of finding the sheath boundary;
Ro provides guidance for a first guess at locating the Stefan boundary. The key

to the alternate method is using the 1-D test problem solution for piece-wise fits

of the form

(R_]2= [E ] X] (B.6)
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Notice Mandell's fit takes this form if E0 = kO/eAd /2.291/1.262. Only two data

points are needed from the data base to define the fit coefficients xe and x,.

The correct "neighborhood" is defined by the requirement that the actual E, 4
values both be internal to the discrete array values used. The procedure is

analogous to a table look-up and interpolation. The whole process is coded in

module CNVRGC, which initializes the internal data base (E, 4), R arrays) and

subsequently estimates the convergence factor (Ro/R)2.

To test the methodology, we integrated the 1-D field equations for different R.

values exactly, and compare to the results using the CNVRGC module and using

the Mandell fit. The attached plots show the results for a nominal 5xJ010/m 3,

0.1-eV plasma. The base case used to initialize the CNVRGC module is Vc =

45 kV, R, = 0.1 m, for which Ro z 8 m. Notice the CNVRGC E, 4 solutions

are closer to the exact than the Mandell solutions, even though neither is bad.

The Mandell solutions, if adjusted to exactly match the same Vc at Rc, would

result in only a small error in R0 , and hence a small error in the estimated

collected current, which goes as R0 2. The difference between the CNVRGC and

Mandell solutions is most marked in the "RHO" plots. The reason for the

discrepancy is obvious in the "Calculated Ro" plots. Notice the CNVRGC model

errors are much smaller than for the Mandell fit, and the latter exhibit a

worrisome structure near Ro.

One word of caution: Attempts to use the CNVRGC model with different plasma

parameters than those used to initialize the internal data resulted in larger errors.

The CNVRGC model in effect produces a customized fit function for given plasma

parameters which remains accurate for a wide range of geometries, but should be

re-initialized if plasma parameters change. However, for given plasma parameters,

the CNVRGC "customized" fit is clearly superior to the "universal" Mandell fit.

To prove that point, we repeated similar analyses for two plasma extremes: 109

and 1012 e/m 3, both at 0.2 eV (temperature makes litle difference compared to

number density within resaonable LEO ranges). The next two sets of three plots

show the results. Notice in both sets the CNVRGC function provides very gocd

agreement even for problems far from the "calibration" model problem, and always

better than the Mandell fit.
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APPENDIX C

APPLICATION OF ELF2 TO SPEAR III PROBLEMS

C.1 PROBLEMS OF INTEREST.

Below we list SPEAR I design issues on which the Tetra electric field analysis

capabilities can contribute, either within or as extensions of the ELF2 project.

C.1.1. The Umbrella Electrode.

The SPEAR I experiments flashed to the large vacuum test chamber walls during

ground tests. The breakdown occurred at about +500V (no breakdown for

negative polarity); the external circuit limited the curri-at to about 10A. No

such breakdown occurred in the actual space experiments. The best hypothesis so

far is that trapped electrons had long enough paths (compared to mean free path

between collisions) to produce avalanching in the thin neutral gas. If the ions

colliding into the chamber walls sputter, say 10 electrons each, then the ionization

mean free path need only exceed 1/l 0 th the average electron flight path length to

get avalanching conditions.

The purpose of the umbrella electrode is to reproduce the effect of the ground

test chamber walls in the SPEAR III experiment, which will use both polarities.

Issues are as follows: 1) How big must the umbrella be? 2) What material

should be used (considering secondary emission)? 3) What are the field

distributions and what effect do they have? Outgassing can increase the ambient

density by 2 to 3 orders of magnitude, as a function of position and time.

Victoria Davis of Katz's group has done the outgassing contour computations.

C.1.2. Solar Array Experiments.

The first experiment uses traditional photovoltaic cells (as in the space station)

near the cylindrical rocket body. The solar cells may be both folded and

unfolded. The second experiment simulates a solar concentrator (SUPER, which is

radiation hardened) and GaAs active elements. One concentration method is a
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slot concept, using trough-like mirrors and cell assemblies. The other method uses
a cassagranian geometry (lens, parabolic mirror, secondary, GaAs cells). The issue
is finding the flashover thresholds, which will limit power production.

C.1.3. Passive Field Emission Structure(s).

There are four concepts under consideration to provide electrical contact with the
plasma ground: a) A bi-polar hollow--cathode plasma contactor. b) Electron-
emitting heated filaments. c) Attitude control produces N2 ; Paschen minimum
breakdown connects to plasma ground (NASA thinks this has happened to active

satellites, where it has caused damage to electronics.) d) Passive discharge
method, using sharp objects. (Field emission is a well understood mechanism.)

C.1.4. Placement of Diagnostics.

Field distributions will affect electron and ion trajectories. Where should the
instrumentation be placed? How will they affect particle energy distributions?

The instruments are mostly electrostatic analyzers.

Clearly, we can contribute in the analysis and calculation of electrostatic fields.
Even vacuum solutions will be useful, since the space-charge effects are noticeable

mostly near the sheath edge (meters away from the spacecraft surface). However,
we would still need to couple in a particle-pushing code. (Ira Katz has offered

to get us one, but we would have to work the interface.) The avalanche issue is

fascinating physics, and we can make significant contributions given our kinetics

work.

The following sections describe the physics of a viable approach to address the

above four issues, the advantages of using the ELF codes, and the numerical

techniques suitable for calculating the E-fields.

C.2 A LOW-IONIZATION, QUASI-COLLISIONLESS PLASMA SHEATH
MODEL.

I. Katz, et al. (Ref. 1) suggest a first-order model which predicts breakdown of
a low earth orbit sheath above a critical neutral density. Using average values of
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electron and ion velocities and the ionization cross section, the model correctly

predicts the approximate value of the critical neutral density Pc. We propose an

improved model, based on the efficient, second-order accurate finite differences

methods in boundary-fitted grids in our ELF codes, and an accurate treatment of

the ionization process.

The ionization cross section is actually a function of electron energy I- = e4. At

high energies, Eq. 3.3 of R. D. Evans (Ref. 2) gives an empirical fit for track

length or mean range

R. = 4.12 kg/m 2  ,ev(1265 - .0954x /A&ev) (C.1)

where ,ev is 5 in MeV. Notice at low energies the exponent is nearly constant.

Differentiation gives the energy deposition rate, which is nearly constant per unit

length. Assuming (Ref. 3) that 85 eV is lost per ionization (which virtually all

collisions result in), the above formula implies an ionization cross section for a

molecule the size of N2 of a Z 0.2-10-16 cm2 at 10 keV, which compares well

with measured o = 0.13x10 -16 cm 2 (Ref. 4). We should expect the product aVe

to be proportional to X-265, So o- goes as 4r.235.  Of course, a more accurate
analysis depends on chemical composition (Ref. 5).

Cross section data is available for N2 and 02 and many other chemical

constituents of interest (Ref. 4). Of special interest are long-chain hydrocarbons,

because they have low ionization potentials. They are likely to de-gas from

organic compounds like pump oils and seals. If we can characterize the chemical

composition of effluents de-gassing from a spacecraft, we can express the effective

ionization cross section as a function of energy o( (. Thus, we can model the

ionization source (e-ion pairs/cm3/s) as:

S = N. a V. Ne (C.2)

wherc Nn is the neutral number density, which may be a function of position and

time.

The effect of the geomagnetic field may be argued to be negligible to first order
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as follows. Although the magnetic turning will cause the average electron to
dwell longer at a given position than if its path went straight to the collector,
the first-order effect is to reduce the current; the space-charge profile p vs
position remains nearly the same as calculated by ignoring the B-field. Thus, Ne
= p/e is unaffected by the geomagnetic field, and so also the ionization source

term S.

Consider a positively biased spherical collector surrounded by a grounded concentric
spherical umbrella electrode. As >10 keV ions bombard the umbrella electrode,
they will generate 10 or more electrons per ion (Ref. 6). If we ignore edge

effects, the problem is 1-dimensional. For a given material, the expected number
of electrons per ion Fu(O) and average electron energy Eu(0) are functions of the

ion energy, given by the potential at their point of birth O(R). Thus, the plasma

near the umbrella electrode will have an altered temperature

S= 1.5 S(R) Eu(0) dR (C.3)

fS(R) dR

and an altered density given by

_f [-Ru '2 S(R) Fu(0) dR-no, {-,].5 (0.4)

where the integrals are from the collector Re to the umbrella Ru. The

steady-state solution (if one exists) is

no' - S(R) Fu(0) dR I I (C.5)

If the average Nn is above critical, the sheath will be unstable, and no steady-
state solution exists. If it is stable, a non-linear loop will be required to
converge on the steady-state solution, starting from the sheath solution ignoring
the ion contribution to p.

A time-dependent model can be built by integrating the ion equations of motion.

Since the electrons are much faster, a quasi-steady--state treatment of the electron
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sheath is acceptable. Thus, the ion source strength is known. Solution of the

ion conservation and continuity equations will yield the time-dependent ion

density. The space-charge is then

p = e (ne-ni) (C.6)

An analogous 2-D model is required to take into account the field enhancements

at the edge of the umbrella electrode. That enhancement will concentrate the ion

flow, which in turn will concentrate the return electron flow. Accuracy of the

field calculations may be critical.

C.3 THE ELECTRIC FIELD (ELF) ANALYSIS CODES.

The ELF codes were originally developed as a tool to design field shaping

electrodes for diffuse gas discharge devices. They are based on the generation of

a boundary-fitted grid, on which the field continuity equations are transformed

numerically. The transformed equations are then solved by second-order accurate

finite difference methods, and the solution ic transformed back to physical space.

The result is high accuracy (<0.1% for modest grid sizes) with high speed

(minutes interactive for a non-trivial geometry vacuum solution on a VAX

11-780-class machine). In contrast, finite-element codes typically require overnight

batch operation on CRAY supercomputers, and still may produce -30% errors on

conductor surfaces (Ref. 7).

We have been working on the development of the next-generation electric field

(ELF2) analysis code under Contract DNA 001-89-C-0009. We have identified a

feasible approach to solve Low Earth Orbit (LEO) plasma sheaths within ELF's

boundary-fitted grid, finite-differences methods. In addition, the ELF field solving

and plotting programs have been modified to handle cuts in the computational

plane. This provides us with a powerful method to handle difficult geometries,

especially those with highly re-entrant boundaries.

For example, a computational grid has been generated for the current-collecting

sphere and first two voltage-grading bushing rings (SPEAR III). Figure 1 shows

the sphere and bushing. It is apparent from this figure that part of the geometry

is complex. Hence, standard grid generation methods would not apply. However,
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these methods can be effective if the computational space is tailored to the

geometry. Here, we have used the Thomas and Middlecoff method with some

modification to the computational plane. Figure 2 presents computational and

physical planes for this problem. The final form of the computational plane was

among the five configurations which were tested. With this particular grid

generation method, the boundary point distribution will determine the behavior of

the interior grid lines. Sometimes additional control lines are necessary in the

interior of the computational domain to improve the behavior of these grid lines.

The dashed lines in computational space (Figure 2a) are control lines. These lines

are essential in controlling the interior grid lines for this geometry, and without

them the computed grid would fold. Figure 3 presents a grid (66x46) generated

with this method, and Figure 4 shows an enlarged section of the grid around the

bushing rings.

C.4 NUMERICAL METHODS FOR CALCULATION OF SPACE PROBE

E-FIELD INCLUDING IONIZATION FROM BACKGROUND NEUTRALS.

It is now clear that the consistent solution of the sheath problem discussed above

involves two numerical aspects: the Stefan problem, and a "particle pusher" code.

C.4.1. Stefan Problem.

The consistent solution of the sheath problem is a multidimensional Stefan

problem, i.e. a boundary value problem in which the position of one boundary is

not known. In a typical two-point boundary value problem in l-D, one solves a

second order elliptic equation for potential V over a specified domain 0 < x < L,

with L specified, and with boundary conditions

V(O) = Vo, V(L) = V1 or dV/dxlL = G1. (C.7)

In a Stefan type of problem, one typically solves the fields with boundary

conditions of

V(O) = Vo, V(L) = V1  and dV/dxlL = G1, (C.8)

where one does not know in advance the position of the right boundary L. Note
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that if L were known, (2) would over-specify the problem.

For a linear 1-D problem, L may be solved directly. For the nonlinear 'problem

of present interest, L can only be solved iteratively. Also, the plasma sheath

proble.m is 2-D or 3-D, so the analog of the 1-D variable L is now an outer

bouxidary line (in 2-D) or surface (in 3-D).

The problem is made easier because we expect the sheath edge to appear far
enough from the probe that the details of the probe geometry will be obscured;
i.e., the sheath boundary is approaching a spherical shape. We will not have to
assume a spherical shape, but we will be able to drive the iterations for the outer

boundary by considering coordinate stretching in r only; i.e., we will solve
iteratively for L(O) using 1-D Newton-Raphson iteration in each L(O) separately,

with the 0 effect lagged in the iteration (Picard iteration). Likewise, the essential
nonlinear character of the solution is l-D, and the details of the nonlinear
iteration method will be developed and proven in l-D. The Langmuir-Blodgett
1-D solutions for spherical symmetry would be reproduced from first principles.

The problem formulation will be a type of invariant embedding, in which the

equations are transformed via a coordinate stretching with an undetermined
stretching parameter; i.e., the radial coordinate r in physical space is transformed
to R in logical space by R .= r/L(O) where L(O) is unknown and is solved by a

quasi-1-D Newton-Raphson iteration. The Dirichlet boundary conditions

V(O) = Vo, V(L) = V1  (C.9)

will be applied directly in every nonlinear iteration, and the error term

ERR = dV/dxIL - Gi (C.10)

will drive the nonlinear iteration correction.

In order to achieve convergence, it generally will be required that the initial guess

be good enough to be within the neighborhood of monotonic behavior of the
solution. Experience with the 1-D solution will be important to assure this.

Given this reasonable initial guess, experience with similar nonlinear problems
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suggests that 5-10 nonlinear iterations, each involving a solution of the linearized
elliptic boundary value problem, will be sufficient for unequivocal convergeLce.
The 3-L problem is not expected to be any more difficult than the 2-D or 1-D
problems as far as this nonlinear iteration is concerned, the primary differeilce
being in the operation count for the inner (linear) problem. We propose to use a
semicoarsening multigrid method, which is very efficient for high resolut.ion
problems, for the inner (linear) solver (about one order of magnitude faster tha.,

SOR methods for 100x400-sized grids).

C.4.2. Particle Pusher Code.

In order to self-consistently calculate the ionization effect of the background
neutrals, we assume that the electrons are at a steady state, but that the more
massive ions are treated as transient particles moved in a self-consistent E-field
by a particle pusher code. This procedure again involves a nonlinear iteration.
However, our experience on similar problems suggests that an outer (nonlinear)
Picard iteration will be adequate, and much cheaper than a multi-dimensional

Newton-Rlaphson iteration, both in computer time and in development time.

The particles are accelerated according to Newton's law F = ma, wherein the

force F is directly proportional to the particle charge and to the local electric
field. Since the particle positions will be described in a stretched (non-orthogonal)
2-D or 3-D non-orthogonal coordinate system, one must be able to accurately
interpolate the E-field in the 2-D or 3-D non-orthogonal grid, and to move the

particles accurately in an unsteady force field.

Our subcontractor, Ecodynamics, has aready developed massless particle tracker
codes in general non-orthogonal 2-D and 3-D coordinates (for tracing of
radioactive particles in unsteady fluid flows). The codes have been verified to be
fully second order accurate in space and fifth order accurate in time. Some

development is still required to convert this to a massive particle tracker.

C.5 RELATIONSHIP TO SPEAR III NEEDS.

The application of the proposed model to the umbrella electrode is clear. The
modified ELF2 code will provide accurate, detailed, 2-D field distributions near the
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edge of the umbrella electrode, self-consistently computing the ion currents and

densities. Different electrode materials can be tried by using their electron yield

parameters.

The breakdown of solar arrays has been adequately modeled by I. Katz, e t a l.
(Ref. 1) in terms of the field stress at the surface E.. The modified 3-D ELF2

codes could provide accurate E. values for various geometries relative to the rocket

body and plasma ground. (It is doubtful that 2-D analyses will be adequate if the

array is deployed in the traditional position beside the main cylindrical body.)

We expect the modified ELF2 codes to maintain a significant speed advantage

over finite element codes while improving accuracy, especially at computational

boundaries.

The field distributions in the plasma contactor sheaths will probably be affected by

the physics of the background neutral ionization for all proposed mechanisms.

2-D analyses may suffice if the contactors are deployed near the rocket body axis,

as in SPEAR I. More accurate field calculations will provide confidence in

performance predictions for the various concepts under consideration, especially

passive field emission.

Finally, the combination of accurate field distributions and self-consistent ion

trajectories will provide guidance for placement of electro-static charged particle

analyzers and other plasma diagnostics, in addition to aiding in data analysis.
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Figure 45. SPEAR current collector.
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Figure 47. Computational grid.
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Figure 48. Enlarged section of figure 47.

C-13



APPENDIX D

ELEMENTARY SHAPES FOR BUILDING GEOMETRIES

The instructions-driven input technique relies on four elements or "tools". This

appendix describes in detail what each does and how to use it. For each, we

define the input parameters required, and the effect, including the effect on node

spacing, since that can be important for control lines.

All options require definition of the grid segment in the form:

I(or J) = #fix, other = # to # (D.1)

That is, one index (I or J) must be fixed, and the other must have a range.

These specifications may be given as fractions of the logical space unit square,
rather than index integer number. This option facilitates changing the grid array

dimensions without changing the instructions file, but care must be exercised to

insure that the instructions make sense regardless of number of nodes. The

purpose of the tools is to calculate the coordinates of each node in the specified

range.

LOCATE allows the user to specify each node location individually. (It makes

little sense to use relative range limits with this option.)

STRGHT creates a straight line. The input parameters are the end-point

coordinates Xfm, Yfmn and Xto,Yto. The nodes are equally spaced. (Notice this

makes STRGHT useless to define a control line, since the purpose of a control

line is to pull grid lines toward some region at the expense of others.) The
length units are arbitrary, but must be the same for X and Y, and must be

compatible with other calculations throughout the ELF run.

ELIPSE makes a segment of an ellipse. Input parameters are the ellipse origin
Xo, Yo, horizontal/vertical radii Xr, Yr and angle limits FM, TO. (Subroutine

ELIPSE uses radians, but the instruction-driven input code translates from degrees

for the user's convenience.) Points are equi-distributed in angle on a unit square,

which is then stretched to the actual aspect ratio Xr/Yr. Notice this means
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angles are not physical angle, unless Xr = Yr. For example, 45" is the point

where aX = Xr//1 and aY = Yr/VS2; if Yr << Xr, that point is close to a

physical angle of 90".

SELIPS makes a segment of a superellipse. Input parameters are the same as for

ELIPSE with one addition: The power of the superellipse PWR. A superellipse

is defined by the relationship

AX PWIL tl
= -1 (D .2 )

Notice if PWR = 2.0, you get a regular ellipse. PWR = 1.0 gives a straight

diagonal line for each quadrant. As PWR - w, the superellipse tends toward a

square corner in each quadrant. For both ELIPSE and SELIPS options, the user

is responsible to insure that the end-points come out where he needs them.

QADRNT makes a quadrant of a superellipse, and distorts it as needed to fit a

parallelogram defined by three points. The input parameters are the three points'

coordinates Xfm, Yfm, Xc, Yc and Xto, Yto, and the superellipse power PWR.

The unit square point (1,0) maps to (Xfm, Yfm), (1,1) maps to (Xc, Yc) and

(0,1) maps to (Xto, Yto). In essence, QADRNT "rounds off" a sharp corner of

arbitrary angle, orientation and aspect. This gives the user positive control over

end-point positions and tangent directions, facilitating smooth "butts" between

segments. Another possible use is to create control lines, since placing the corner

Xc, Yc nearer one end insures half the points will be on that leg. (The corner

Xc, Yc may be in a straight line between Xfm, Yfm and Xto, Yto.)

These shape elements are not exhaustive. Many other analytical classes may be

useful, much as the Rogowski electrode shape. The user may always modify the

Fortran coding to create a geometry for a specific need. However, these

elementary shapes have been adequate for most geometries, and represent greater

flexibility than any CAD program we are aware of (which cannot generate

superellipses).
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The user should be cautioned to allow ample time to sketch out the geometrical

concept and debug his instructions file set. A working level of competence in

analytical geometry is a user prerequisite regardless of input technique.
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